
Verificarlo stochastic rounding and variable
precision : exploring accuracy and reproducibility.

Pablo de Oliveira Castro <pablo.oliveira@uvsq.fr>

CEEC Webinar 2025-03-04

LI-PaRAD, UVSQ, Université Paris-Saclay

1 / 23

Context: Floating-Point issues

Building numerically robust numerical simulations is a complex task

Floating-Point (FP) challenges
▶ Model or Discretization error (approximation, conditioning)
▶ IEEE-754 (representation, absorption, cancellation)
▶ Order of operations matters (vectorization, compiler, parallelisation)
▶ Reducing precision saves energy and time-to-solution

2 / 23

Floating-Point IEEE-754 representation

IEEE-754 defines a standardized FP representation

f = s × 2e × m

s e1 e2 . . . eq m1 m2 . . . mp

sign exponent p. mantissa

▶ binary64: 1 bit sign, 11 bits exponent, 52 bits pseudo-mantissa
▶ binary32: 1 bit sign, 8 bits exponent, 23 bits pseudo-mantissa

F
0

2−2

2−1

20

21

22

23

3 / 23

Floating-point arithmetic errors

223

+

1.625×

23 1.3×

absorbed itsb

IEEE-754 implementation guarantees for ◦ ∈ {+, −, ∗, /} that

ẑ = (x ◦ y)(1 + δ) with |δ| ≤ u/2

(1 + δ) captures the relative error of an IEEE-754 operation

⌊z⌋ ⌈z⌉

zRN
R
F

u.2e

▶ IEEE-754 rounding is deterministic
4 / 23

Metrology ISO-5725

xx
x x

precision

x x

xx

trueness

x x
xx

accuracy

▶ We do not always have a reference value
▶ multiple solutions are admissible
▶ unknown : new simulation, intermediate result

▶ Checking precision and reproducibility do not require a reference
▶ Part 1: Monte Carlo Arithmetic / Stochastic Rounding
▶ Part 2: Verificarlo + VPREC

5 / 23

Outline

Stochastic Rounding

Verificarlo

Monte Carlo Arithmetic [Stott Parker, 1999]

▶ Each FP operation may introduce a δ error

ẑ = (x ◦ y)(1 + δ)

▶ Monte Carlo Arithmetic makes δ a random variable

ẑ1 = (a + b)(1 + δ1)
ẑ2 = (c + d)(1 + δ2)

ẑ = ẑ3 = (z1 × z2)(1 + δ3)

▶ The forward error Ψ = ẑ−z
z is analyzed probabilistically

▶ Stochastic process function of the δ1, . . . , δk.

▶ How to choose the δk distribution?

6 / 23

Stochastic Rounding (SR) → unbiased
▶ Upward rounding ⌈z⌉ and downward rounding ⌊z⌋:

ẑ = z (1 + δ) with |δ| ≤ u

ẑ =
{

⌈z⌉ with probability p(z),
⌊z⌋ with probability 1 − p(z).

⌊z⌋ ⌈z⌉

z1 − p(z)
p(z)

R
F

1.62

1.6 1.7

0.8 0.2

▶ p(z) = z−⌊z⌋
⌈z⌉−⌊z⌋ and E(ẑ) = p(z)⌈z⌉ + (1 − p(z))⌊z⌋ = z.

▶ 1.7 × 0.2 + 1.6 × 0.8 = 1.62.

7 / 23

Stochastic Rounding (SR) → unbiased
▶ Upward rounding ⌈z⌉ and downward rounding ⌊z⌋:

ẑ = z (1 + δ) with |δ| ≤ u

ẑ =
{

⌈z⌉ with probability p(z),
⌊z⌋ with probability 1 − p(z).

⌊z⌋ ⌈z⌉

z1 − p(z)
p(z)

R
F

1.62

1.6 1.7

0.8 0.2

▶ p(z) = z−⌊z⌋
⌈z⌉−⌊z⌋ and E(ẑ) = p(z)⌈z⌉ + (1 − p(z))⌊z⌋ = z.

▶ 1.7 × 0.2 + 1.6 × 0.8 = 1.62.
7 / 23

SR errors are mean independent

▶ In SR, for x1, x2, x3 ∈ F and ◦1, ◦2 ∈ {+, −, ∗, /},

z = x1 ◦1 x2 ◦2 x3 =⇒ ẑ = ((x1 ◦1 x2)(1 + δ1) ◦2 x3) (1 + δ2),

▶ E(δ1) = E(δ2) = 0.

Lemma (Connolly et al.)
For δ1, δ2, ..., obtained from an SR computation in that order, the δk are
mean independant random variables,

E(δk/δ1, ..., δk−1) = E(δk) = 0

▶ Independence =⇒ Mean independence =⇒ uncorrelatedness.

8 / 23

Bounds for sum-product DAGs

For z resulting of a multi-linear sum-product computation graph with n
SR operations,
▶ Ψ = ẑ−z

z is a martingale (generalisation of a random walk)
▶ E(Ψ) = 0
▶ |Ψ| is bounded by O(

√
nu) at fixed probability where n is the

number of operations

Error Analysis of sum-product algorithms under stochastic rounding de Oliveira
Castro, El-Arar, Petit, Sohier, arXiv 2024.

▶ The paper gives tighter bounds depending on the operations
combinations.

9 / 23

Bounds for multi-linear algorithms

SR sum-product analysis gives error bounds for multi-linear algorithms:
▶ Dot product O(

√
n.u)

▶ Horner’s polynomial evaluation O(
√

n.u)
▶ Pairwise summation O(

√
log2 n.u)

▶ Karatsuba multiplication O(
√

log2 n.u)

What about non-linear algorithms or complex numerical software with
thousands of lines?

→ Monte Carlo Simulation

10 / 23

Example: Linear 2x2 System

▶ Ill-conditioned linear system (condition number 2.5 × 108).
▶ We solve it with the Cramer’s formula.

(
0.2161 0.1441
1.2969 0.8648

)
x =

(
0.1440
0.8642

)

xreal =
(

2
−2

)
xieee =

(
1.9999999958366637

−1.9999999972244424

)
▶ The IEEE-754 binary64 result has 8 significant decimal digits or 28.8

significant bits.

11 / 23

MCA 2x2 System: Stott Parker’s significant bits

1.9999999850477848e + 00
1.9999999957687429e + 00
2.0000000024646973e + 00

σ̂ µ̂

0

250

500

750

−1e−08 −5e−09 0e+00 5e−09 1e−08

X0 µ̂0 − 1

co
un

t

Figure: Error distribution for 10000
samples FULL MCA (t = 53)

▶ Stott Parker defines the
number of significant bits as

sPARKER = − log2
σ̂

|µ̂|
≈ 28.5.

(sieee ≈ 28.8)

▶ Magnitude of the signal to
noise ratio.

▶ We provide confidence intervals
depending on number of
samplesa

aConfidence Intervals for Stochastic
Arithmetic. Sohier, de Oliveira Castro,
Févotte, Lathuilière, Petit, Jamond. ACM
Transactions Mathematical Software 2022.

12 / 23

SR to detect rounding bias in IEEE-754
▶ Round-to-nearest is prone to absorptions and becomes biased in

large summations.
▶ SR unbiasedness avoids (and detects) stagnation.

105 106 107

n

10 6

10 5

10 4

10 3

10 2

10 1

E
rr

o
r

SR bound

SR-32

RN-binary32

1 - = 0.9

Figure: Dot product of two vectors of n elements, SR vs. RN errors

Stochastic Rounding Variance and Probabilistic Bounds: a new approach. El Arar,
Sohier, de Oliveira Castro, Petit. SIAM JSC, 2022. 13 / 23

Outline

Stochastic Rounding

Verificarlo

Verificarlo

github.com/verificarlo/verificarlo
▶ Based on the LLVM compiler
▶ Active open source project with 15 contributors
▶ Backends: debugging (MCA, Cancellation) + mixed-precision

(Vprec)
▶ MCA overhead from ×6 (binary32) to ×160 (binary64).

Verificarlo: Checking Floating Point Accuracy through Monte Carlo Arithmetic.
Denis, de Oliveira Castro, Petit. IEEE Symposium on Computer Arithmetic 2016

14 / 23

github.com/verificarlo/verificarlo

Compiler optimizations are instrumented

▶ Instrumentation occurs just before code generation
▶ Enables analyzing precision loss due to compiler optimizations

for (int i=1;i<n;i++) {
y = f[i] - c;
t = sum + y;
c = (t - sum) - y;
sum = t;

}
return sum;

Figure: Analysis of the effect of compiler flags on a Kahan compensated sum
algorithm (binary32)

15 / 23

Overhead

verificarlo backends
original IEEE MCA quad MCA integer

Kahan binary32 1.34s 2.36s (×1.7) 6.28s (×4.7) 7.76s (×5.8)
Kahan binary64 1.34s 2.34s (×1.7) 105s (×78) 64s (×48)
NAS CG A 0.80s 6.41s (×8) 173s (×216) 128s (×160)

Table: Execution time (and slowdown) for a Kahan sum of 100 millions
elements and for the NAS CG A using different Verificarlo backends.

16 / 23

Example: Loss of signifiance in ABINIT

▶ ABINIT, collaboration with CEA (Chatelain, Torrent, Bieder)
▶ Calculates observable properties of materials (optical, mechanical,

vibrational)

Fixing Simp_gen
▶ Run: total-energy for

BaTiO3. Trace of Simpson’s
integral.

▶ Replaced by a compensated
version Dot2 (Ogita et al.)

▶ Colors capture the different
call-site paths

▶ 1 CSP has still precision loss
due to reentrance of the
error

17 / 23

VPREC for mixed precision

▶ Estimate numerical effect of fp32, bfloat16, tensorflow32, fp24 on
standard IEEE-754 hardware (before paying the porting cost)

▶ VPREC emulates any range and precision fitting in original type
▶ Uses native types for storage and intermediate computations
▶ Handle overflows, underflows, denormals, NaN, ±∞
▶ Rounding to nearest (faithful)
▶ Fast: × 2.6 to × 16.8 overhead

r tbinary16

s exponent pseudo-mantissa

18 / 23

YALES2 application

▶ Computational Fluid Dynamics solver from Coria-CNRS

▶ Deflated Preconditioned Conjugate Gradient
▶ CG iterations alternate between a:

▶ Deflated coarse grid
▶ Fine grid

VPREC: Find minimal precision over iterations that
preserves convergence (dichotomic exploration)

Automatic exploration of reduced floating-point representations in iterative
methods. Chatelain, Petit, de Oliveira Castro, Lartigue, Defour. Euro-Par 2019

19 / 23

Mixed-precision on Yales2

Entire application Only Deflated part

0 20 40 60
Iteration

0

10

20

30

pr
ec
is
io
n

0 20 40 60
Iteration

Figure: Minimal precision that preserves convergence.

Energy 16% gain on the deflated part
Communication 28% gain on communication volume
Time 10% speedup on CRIANN cluster (560 nodes)

20 / 23

Combining VPREC + SR

IEEE
VPREC MCA (29 samples)
binary32 MCA (29 samples)

0 20 40 60

Iteration

10−8

10−6

10−4

10−2

100

m
ax

no
rm

0 20 40 60

Iteration

Figure: Resiliency of VPREC and binary32 configurations. In red the IEEE
maxnorm convergence for reference. Blue envelop shows the 29 MCA samples
for the previously found VPREC configuration. Green envelop shows the 29
MCA samples for the binary32 configuration. All samples converge, showing
the resiliency of both configurations.

21 / 23

Conclusion

▶ Verificarlo, an LLVM based tool, transparently instruments large
codes with VPREC or SR rounding.
▶ SR in average analysis is a powerful tool to analyze the

reproducibility of a numerical program.
▶ VPREC emulates the effect of mixed-precision on standard hardware.

▶ Used on many large codes: ABINIT, Dipy, EPX, Yales2, QMCkl, etc.
▶ Limitations: costly overhead and data-dependent analysis.

▶ Collaboration with Y. Chen and R. Iakymchuk on Nekbone and
Neko.

22 / 23

Thanks !

Acknowledgments: Y. Chatelain, E. El-Arar, E. Petit, D. Sohier, ...

23 / 23

	Stochastic Rounding
	Verificarlo

