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Executive Summary
This document is the second deliverable of work package 3 – ‘Exascale Algorithms’ of
the EuroHPC JU Center of Excellence in Exascale CFD (CEEC). This work package is
concerned with all efforts required for improving algorithms in the CEEC codes for efficient
exploitation of Exascale architectures. In particular, we focus on improving scalability and
numerical properties of cornerstone algorithms in computational fluid dynamics (CFD)
codes; providing mixed-precision algorithmic solutions for better energy footprint and/ or
faster execution; enabling error control and assure robustness of algorithms; facilitating
Exascale design optimization.
This deliverable ‘D3.2 – Stable adjoints’ provides a report on the known issues and chal-
lenges associated with exponentially growing solution of the temporal, linearised adjoint
problem, arising as part of the sensitivity calculation for the topology optimisation of
statics mixers in lighthouse case 3 (LHC 3). This report also contains an overview of pos-
sible approaches for alleviating the exponential growth in the adjoint solution, including
algorithmic considerations and recommendations for next steps.
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1 Introduction
The Center of Excellence in Exascale CFD (CEEC) implements Exascale ready workflows
for addressing relevant challenges for future Exascale systems, including those procured
by EuroHPC. The significant improvement in energy efficiency will be facilitated through
efficient exploitation of accelerated hardware architectures (GPUs) and novel adaptive
mixed-precision calculations. Emphasis is furthermore given to new or improved algo-
rithms that are needed to exploit upcoming Exascale architectures. The efforts of the
center are driven by a collection of six different lighthouse cases of physical and engineer-
ing interest, ranging from aeronautical to atmospheric flows. For more details on each
lighthouse case, we refer to ‘Deliverable D1.1 – CEEC Exascale lighthouse cases and their
need’ [4].
This deliverable is directly related to the development work necessary to execute light-
house case 3 on the topology optimization of a static mixer. The basic idea of this case is
to automatically find an optimal design of a mixing device, balancing the pressure drop
(i.e. the flow resistance) and the mixing ability in an optimal way. This goal is achieved
using topology optimization, a modern design method that enables the determination of
completely new geometries (i.e. topologies) without the need of prescribing a-priori pa-
rameterized shape function. In this way, the optimized design is very general, but may
still be constraint by certain external conditions (e.g. the size of the optimization domain,
the amount of solid material available etc.).
Within lighthouse case 3, the topology optimization algorithm will be developed for the
code Neko [9]. Therefore, all methods will need to be efficiently implemented on both
CPU and GPU architectures, which may necessitate novel algorithms developed in WP3.
The aspects to be discussed in the present deliverable D3.2 deal with problem of the
calculation of sensitivities for the topology, typically calculated using an adjoint method.
This problem is in principle general and independent of the chosen code or numerical
implementation, therefore, the below description is not tied to Neko in particular.
The roadmap for both the lighthouse case 3 (topology optimization) and the community
code Neko intended for this case has already been outlined in ‘Deliverable D3.1 – Analysis
of the CEEC codes and underlying solvers: Requirements and strategies definition’ [5],
Section 3.4.
This document is organised as follows: Section 2 presents the issue with exponentially
growing adjoints from a physical/mathematical perspective. Section 3 presents a num-
ber of strategies that holds the potential to remedy the issue with exploding adjoints.
Emphasis is made on algorithmic complexity and suitability with respect to reaching Ex-
ascale capabilities. Section 4 summarizes and ranks the different strategies, and provides
recommendations for the path forward.

2 Background
Lighthouse case 3 addresses topology optimization of static mixers, in which the geometric
layout of a static mixer will be designed using density-based topology optimization. also
known as the material distribution method [1]. The method is defined by its extreme
level of design freedom, which is obtained by the introduction of a continuous material
indicator variable, or field, which, in its standard form, is used to interpolate between
no material (void/fluid) and material (solid wall/no-slip condition). Hence, it allows for
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topological changes (how different parts are connected) during the optimization process
and is thus much more versatile than e.g. shape optimization, where only the boundary
shape of a given configuration is modified. The goal is in the end to obtain a material
indicator field that only specifies either fluid or solid phases, which is made feasible by use
of interpolation functions tailored for the given physics being considered. However, this
type of field representation of the geometry also means that the resulting optimization
problem is characterized by a very large number of design variables (e.g. millions) but at
most a handful of objective functions and constraints. For computational efficiency, it is
therefore necessary to employ gradient-based optimization algorithms together with an
efficient computation of the necessary gradients of the objective and constraint functions.
Since in topology optimization, all grid points describe individual degrees of freedom of
the design, typically the solution of the adjoint equations are used for computing the
derivatives of the objective function and constraints [3]. The reason for the popularity
of the adjoint method in design optimization can be made clear from a comparison to
its alternatives. In fact, it is fair to claim that the success of the topology optimization
approach is due to the existence and efficiency of adjoint sensitivity analysis. As example,
both direct sensitivity analysis and the simpler finite difference approximation, results in
the need to perform one additional function evaluation for each design variable (linearised
problem for the direct approach and full non-linear solution for the finite difference ap-
proach). When dealing with millions of variables, such approaches clearly are intractable
from any practical perspective. The adjoint approach, on the other hand, only requires
the solution to a single additional linearised problem for each objective and constraint
function being considered. This renders the adjoint approach almost independent of the
number of design variables. Also note that the adjoint-equation approach is conceptu-
ally the same as the back-propagation algorithms in machine learning. The use of adjoint
equations for topology optimization is a very well-established technique in general, but the
technique comes with some specific challenges when using time-dependent scale-resolving
approaches like direct and large-eddy simulation (DNS and LES) to CFD.
Consider the unsteady Navier–Stokes equations for the flow of an incompressible viscous
fluid, for simplicity, started from a nonzero initial condition but without any other forcing
or inhomogeneous boundary conditions to the system. The velocity field u then satisfies
a quite strong temporal stability condition,

1
2
d

dt

∫
Ω
|u|2 dV = −ν

∫
Ω
|∇u|2 dV, (1)

where ν > 0 is the kinematic viscosity coefficient. Thus, the time derivative of the kinetic
energy will always be negative, so the velocity field will die out eventually due to the
dissipative effects of viscosity.
However, when computing the effects on the velocity field of a small change in, for instance,
the geometry, we are led to solving a system of equations linearized around a base flow.
If the base flow is denoted u and the perturbed field u′, the stability condition becomes

1
2
d

dt

∫
Ω
|u′|2 dV = −ν

∫
Ω
|∇u′|2 dV −

∫
Ω

u′ · (∇u)u′ dV. (2)

The situation is now completely different from condition (1); the linearized flow field is
only guaranteed to die out if the integrand in the last integral of expression (2) is positive.
Unfortunately, nothing can be said in general about the sign of this integral.
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The same condition holds for the corresponding adjoint variable used to compute the
derivatives of a given objective function or constraint. The linearized and adjoint equa-
tions both include a term containing the gradient of the base flow, which can cause expo-
nentially growing solutions. Computational experience indicates that exponential growth
in the adjoint equations generally happens for transitional and turbulent flows when com-
puted using a DNS or LES approach. The common interpretation of this property is that
the Navier–Stokes equations constitute a chaotic system. Thus, a small change in the de-
sign variables in a DNS or LES solution typically generates a trajectory that exponentially
diverges from the undisturbed flow.
However, in most applications, it is the averaged performance of a system with respect to
an ensemble of realizations of the chaotic system that is of interest. Thus, the sensitivity
of an individual trajectory to a change in the design is likely irrelevant.

3 Strategies
To handle the issue of potential exponential growth in the adjoint equations for DNS and
LES approaches, there are a number of options.

1. Keep the flow laminar or only weakly transitional to limit the growth rate of the
solution to the adjoint equation. In practice, that would correspond to the study of
a mixer at low Reynolds numbers (Re), which are likely to be reached with small
outer dimensions, or low speeds. However, mixers are typically operated at higher
Re to enhance the mixing activity.

2. Consider only small time windows for the adjoint integration, over which the expo-
nential growth may not yet overshadow the useful sensitivity information. However,
the lack of proper convergence in time may necessitate running a large number of
ensembles to extract the sensitivity, thus this method has been termed ensemble
adjoint method. However, it turns out that the number of ensembles for a turbulent
flow is very high (millions) which makes the method impractical from a computa-
tional point of view.

3. Handle the exponential growth by simply scaling the adjoint field to prevent floating-
point overflow, which is easy to do due to the linearity of the adjoint equation.
The corresponding gradient expression will then be very large in unscaled units,
dominated by the effects of the exponentially growing modes contained in the adjoint
variable. The large size of the gradient will lead to a minuscule update of the design
variables since the linearization will not be accurate otherwise. In fact, the update
may easily be smaller than the precision of the floating-point system, rendering it
useless. In addition, the dominating exponentially growing modes will not yield the
most beneficial sensitivity for an averaged quantity of interest, since these modes
are only associated with a particular realization.

4. Some very involved techniques to deal with the growth issue have been developed
and studied, mostly for low-dimensional chaotic systems such as the Lorenz systems.
One idea, denoted Least-Squares Shadowing [10], is to differentiate the objective
function only with respect to perturbations that generate trajectories that stay
close to the base flow. The technique is computationally very expensive and is
likely infeasible for the application at hand. Moreover, there are also recent results
questioning the whole idea behind shadowing for chaotic systems [2]. So-called
cumulant truncation [6] is another very computationally expensive technique that
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has been proposed for differentiating low-dimensional chaotic systems.
5. Adopting a two-step approach, where the optimization is carried out on a cruder

lower-dimensional model whose parameters are set by a DNS or LES simulation.
This model may constitute a solution to the RANS (Reynolds-averaged Navier–
Stokes) equations with a specifically tuned turbulence model. The objective function
is then evaluated on the cruder model, and the DNS/LES-given parameters are
frozen during the sensitivity analysis. In this way, the design updates are based
solely on an adjoint equation to the crude model. After the design update, however,
the DNS/LES model is rerun with the updated design to adjust the parameters
in the crude model. For turbulent cases, the crude model is likely a turbulence
model, e.g. a (steady or unsteady) RANS equation with tuned eddy viscosity. The
advantage of updating the coefficients of the RANS based on the DNS/LES of the
forward problem is that the potential systematic differences (modelling errors) may
be minimized by these adjusted parameters. The overall predictive accuracy is thus
enhanced compared to only relying on RANS alone. Specific approaches from data
assimilation may be used to optimize the relevant RANS parameters. However, it
must be noted that the linear systems arising from RANS-based adjoints are prone
to poor conditioning, which significantly deteriorates the performance of iterative
solvers.

6. Similar to the previous approach, successful applications of integrating the adjoint
equation about regularized base flows have been reported [8]. Methods may include
a lower resolution in both space and time of the base flow (potentially avoiding
some of the exponential instabilities). Another alternative, yet unexplored, is the
construction of a low-order model of the forward solution, e.g. based on proper
orthogonal decomposition (POD). By properly selecting the modes, the small-scale
sensitivity may also be avoided.

7. The addition of specific damping terms in the adjoint equations have also been
proposed. In this method, the growth of the adjoint solution is monitored, and
coefficients related to sink terms are dynamically adjusted to avoid energy growth [7].

It is likely that the work conducted as part of WP3 may result in alternatives to the
above mentioned approaches, and hence, we do not limit our selves to these. Instead they
merely act as a starting point for further algorithmic development.

4 Summary
For the case of the turbulent static mixer, it appears that only strategies 5, 6, and 7 are
potential solutions. In particular, strategy 5, that is, to calculate the sensitivities based
on an optimized RANS-based solution, should clearly constitute the initial step. The
DNS will in this case be run using the Neko code. For the RANS-based optimization
and the data assimilation for obtaining adapted RANS coefficients, either an approach
within Neko or external RANS tools, e.g. Nek5000 or SU2, may be considered. On the
other hand, the apparent simplicity of option 6 (regularized base flow) is striking, and
thus a comparison with adjoints based on such simplified base flow is certainly instructive.
Similarly, option 7 is also computationally effective as no other codes or equations need
to be solved, however, it is unclear from the current literature how such a damping term
is formulated. We intend to test several possible formulations, and compare the efficiency
and accuracy.
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