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Executive Summary
This document is the first deliverable of work package 3 – ‘Exascale Algorithms’ of the
EuroHPC JU Center of Excellence in Exascale CFD (CEEC). This work package is con-
cerned with all efforts required for improving algorithms in the CEEC codes for efficient
exploitation of Exascale architectures. In particular, we focus on improving scalability and
numerical properties of cornerstone algorithms in computational fluid dynamics (CFD)
codes; providing mixed-precision algorithmic solutions for better energy footprint and/ or
faster execution; enabling error control and assure robustness of algorithms; facilitating
exascale design optimization.
This first deliverable ‘D3.1 – Analysis of the CEEC codes and underlying solvers: Require-
ments and strategies definition’ provides analysis of consortium codes and their underlying
solvers and summarizes the outcome of the work performed within Tasks 3.1, 3.2, 3.3,
3.4, and 3.5 between Month 1 and 8 of the project. The document also provides the
requirements and strategies definition to reach the project goals. The other deliverables
in work package 3 will be focused on the actual implementation of the defined strategies
and approaches, as well as their integration into the consortium codes.
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1 Introduction
The Center of Excellence in Exascale CFD (CEEC) implements exascale ready workflows
for addressing relevant challenges for future exascale systems, including those procured
by EuroHPC. The significant improvement in energy efficiency will be facilitated through
efficient exploitation of accelerated hardware architectures (GPUs) and novel adaptive
mixed-precision calculations. Emphasis is furthermore given to new or improved algo-
rithms that are needed to exploit upcoming exascale architectures. The efforts of the
center are driven by a collection of six different lighthouse cases of physical and engineer-
ing interest, ranging from aeronautical to atmospheric flows.
In order to establish a roadmap for reaching the project goals driven by the light-house
cases, for more details we refer to [7], we conduct analysis of the consortium codes and
their underlying solvers in the form of questionnaire with the engagement and outputs
from the code owners. As a result of this questionnaire and internal discussions, we draw
requirements for each code and outline potential algorithmic development strategies in
order to meet the work package 3 objectives.
The document is organised as follows: Section 2 presents description of the consortium
codes and both the requirements and potential strategies toward reaching the project
goals. Section 3 summarizes the strategies and approaches toward reliable, efficient, and
fast algorithmic solvers.

2 Analysis of the consortium codes
Together with work package 1 – ‘Exascale light-house cases’, we in work package 3 set up
a questionnaire in order to gather more detailed information on the codes, their solvers,
and to derive requirements for algorithmic developments. Thus, the questionnaire poses
the following main questions:

• How does the solver work on matrices or matrix-free? This topic is related to the
underlying algorithmic solvers (implicit, explicit, Krylov type, Runge-Kutta, etc)
and preconditioning techniques.

• Does the application offer a proxy-app and/ or a (simplified) test case? This topic
is useful for preliminary studies of required computing precision and also on novel
architectures where the whole software stack may not be ready for supporting the
execution of the whole application.

• Does the application rely upon adjoint solver, algorithmic/ automatic differen-
tiation, etc.? This topic is related to topology optimization and targets some
optimization-specific issues.

• Does the application foresee the use of check-pointing mechanisms? This is useful
for studying fault tolerance aspects within the application and when deploying on
new systems (such as the new EuroHPC ones).

• Does the code owner already consider any potential strategies for enhancing scal-
ability, numerical properties, and energy efficiency? This topic is relevant to the
algorithmic development work, covering mixed precision solvers.

In addition, we provide a brief introductory information on each consortium code. Further
details on the codes with their requirements justified by the lighthouse case are given in
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‘D1.1 – CEEC exascale lighthouse cases and their needs’ due on PM8 [7].

2.1 FLEXI
2.1.1 Description

FLEXI is a high-order accurate, open source solver for general partial differential equations
of hyperbolic/parabolic-type based on the discontinuous variant of the spectral element
method, the discontinuous Galerkin (DG) spectral element method (DGSEM) [12]. This
enables an element-local and efficient scheme, even on highly parallel systems. FLEXI is
written in modern Fortran, for the parallelization it uses MPI and for parallel I/O the
HDF5 library. Additionally, FLEXI requires the math library LAPACK and for optional
post-processing the FFTW library. FLEXI’s primary area of application are direct numer-
ical simulation (DNS) and large eddy simulations (LES) of multiscale- and multi-physics
problems, where the fluid phase is governed by the compressible Navier–Stokes–Fourier
equations (NSE), which includes turbulent flows and shock-turbulence interaction. Since
high-order schemes are subject to oscillations at discontinuities, additional stabilization
techniques are necessary to accurately predict strong compression shock waves across
which the flow properties change drastically. In FLEXI, discontinuities in the solution
such as shock waves are handled by shock-capturing strategies through an elementwise
h-refinement strategy in a localized and stable manner. This approach is based on a finite
volume (FV) sub-cell approach, where troubled cells are switched from a DG to a FV dis-
cretization. Another, more stable approach relies on a convex blending of the low-order
FV sub-cell with a high-order DG scheme. To ensure nonlinear stability in underresolved
flow regions as occurring in a LES, FLEXI uses kinetic energy or entropy stable dis-
cretizations based on the split form of the advective terms. Various closure strategies
for the NSE in a LES formulation based on implicit or explicit modeling are available.
High temporal accuracy is ensured through high-order, low-storage explicit Runge-Kutta
(RK) schemes. FLEXI supports unstructured grids of tensor-product elements due to
the DGSEM and high-order accurate geometry representation including curved grid cells
and hanging nodes. Grid adaptation is handled through a conservative mortar interface
definition.

2.1.2 Requirements

Underlying algorithmic solvers and (simplified) test cases While there is no dedicated
proxy-application for FLEXI, there is a possibility to reduce its compilation; so that, we
can test the relevant functionalities. FLEXI uses preprocessor flags to exclude certain
features, e.g. the parabolic part of the Navier–Stokes equations, switch between 2D /3D
computation and the usage of an additional FV operator for shock capturing, which results
in a reduced code with specific functionalities tailored to cover the relevant investigations
and applications within the CEEC project. This limited functionality of FLEXI will be
useful during the initial exploration of the solvers and their potential alternatives. A few
small test cases are available for the reduced version of the code on the public GitHub
repository of FLEXI1, otherwise these are provided. Such test cases should cover the
relevant functionalities of the code for the CEEC project.
For the mixed-precision investigations, it is important to note that the underlying solver
of FLEXI discretizes the NSE with the DGSEM and the solution is forwarded in time

1https://github.com/flexi-framework/flexi

https://github.com/flexi-framework/flexi
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by an explicit, low-storage RK scheme of arbitrary order. Since FLEXI relies on an
explicit time-integration scheme, it is matrix-free and does not require to allocate, store,
and distribute large global matrices. Moreover, rounding errors tend to accumulate and
affect especially later stages of the computations. Thus, a potential advantage of precision
cropping could be achieved, e.g., by reducing the precision in the shock-capturing scheme,
here the FV sub-cell discretization. This is especially suitable if the convex blending
scheme is employed, where rounding errors due to the precision cropping of the FV sub-
cell scheme will affect the accuracy of the solution not significantly due to the smooth
blending of the low-order with the high-order DG method.
The FLEXI team is not considering any alternatives to the compressible NSE discretized
in time and space by an explicit RK schemes and a high-order, hybrid DG/FV sub-cell
method, respectively.

Fault tolerance In regular time intervals, a solution state is written in parallel in an
HDF5-file which allows a restart or resumption of the simulation. The solution state
consists of the solution vector, containing the density, momentum and total energy density,
for each degree of freedom. Check-pointing in the context of adjoint is not relevant to
FLEXI.
Explicit fault tolerance mechanisms have not been implemented and are not the subject
of further development of FLEXI within CEEC. However, there is a possibility to define a
threshold for the performance index, which is the time required to advance a single degree
of freedom from one stage of the Runge-Kutta time integration scheme to the next, which
is evaluated at regular intervals to judge the performance of the simulation (it should be
a constant ideally). If the threshold is exceeded, the simulation will be terminated to
prevent unnecessary resource consumption. A sudden rise of the performance index is
typically associated with a faulty compute node or network switch.

2.1.3 Potential strategies

Here, we outline potential strategies for enhancing scalability, numerical properties, energy
efficiency, as well as execution time. Scalability of the current version of FLEXI is excellent
on CPU-based HPC clusters [5]. Within CEEC, FLEXI will be transitioned to GPU-based
systems to achieve similar scalability applying the same communication latency hiding
strategy as described in [12]. With respect to the numerical properties of FLEXI, the
considered LHC consists of strong shock waves which require special treatment to stabilize
the DG scheme. The shock capturing technique based on a convex blending approach of a
DG with a FV scheme demonstrates the potential of such a scheme by providing robustness
while maintaining the accuracy of the solution in smooth regions. To gain an optimal
balance between robustness and accuracy, further improvements and enhancements of
this approach will be tackled within the CEEC project. This could improve the energy-
to-solution properties. To compute the LHC with FLEXI, wall modelling is utilized to
reduce the number of required degrees of freedom and to increase the time step, resulting
in a reduced execution time and possibly better energy-to-solution properties.
We explore the possibility of adapting/cropping the working precision of the FLEXI code
on few examples. Since the scheme is explicit, rounding errors have a tendency to accu-
mulate and have a larger impact, especially on the later stages of computations. Hence,
a feasible scenario is to lower the precision of the FV sub-cell operator.
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2.2 Alya
2.2.1 Description

Alya2 [18] is a multi-physics simulation code developed in modern Fortran at Barcelona
Supercomputing Center (BSC). From its inception, Alya code is designed using advanced
High-Performance Computing programming techniques to solve coupled problems on su-
percomputers efficiently, especially taking into account heterogeneous architectures. The
target domain is engineering, with all its particular features: complex geometries and
unstructured meshes, coupled multi-physics with exotic coupling schemes and physical
models, ill-posed problems, flexibility needs for rapidly including new models, etc. Since
its beginnings in 2004, Alya shows good scalability results when solving single-physics
problems such as fluid mechanics, solid mechanics, heat transfer, combustion, etc. Over
time, we have made a concerted effort to maintain and even improve scalability for multi-
physics problems. This poses challenges on multiple fronts, including numerical mod-
els, parallel implementation, physical coupling models, algorithms and solution schemes,
meshing processes, etc. Alya is present in the PRACE benchmark suite (UEABS) to-
gether with Code Saturne in the field of Computational Fluid Dynamics and, thus, is
considered as the reference in the EU framework for supercomputing. The core Alya Dev
Team has today around 50 members, distributed among the BSC and its spinoff, ELEM
Biotech.

2.2.2 Requirements

Underlying algorithmic solvers and (simplified) test cases The open-alya version is a
light version of Alya. There is also a miniapp (from the EuroHPC JU CoE PoP project)
that performs the Navier-Stokes assembly of an explicit solver.
To study the underlying algorithmic solutions, we will work on a few small cases first.
Such small testcases will be provided and they cover the relevant functionalities of Alya
via its miniapp.
Alya supports both explicit and implicit solvers. For the explicit solvers, the Runge-Kutta
family is considered, especially Runge-Kutta scheme of a fourth order. These solvers are
matrix-free. For the implicit solvers, Krylov-type solvers and coarse solvers (deflation)
are used. The implict solvers are complemented with preconditioning techniques such as
Linelet, RAS, and approximate inverse. The implicit solvers require to construct a global
matrix. Such matrices can be exported to matrix market format for further inspection
in Matlab; several matrix storage files are produced when done in parallel. Alya offers
a possibility to substitute these solvers and preconditioners, which offers a potential to
facilitate the algorithmic development.
Concerning alternative algorithmic solutions, Alya provides interfaces to work with algo-
rithmic implementations from PETSC, Maphys, and MUMPS libraries. Hence, plugging
our algorithmic solutions, which can be developed separately, is a possibility.

Fault tolerance For check-pointing, we write a restart file using parallel MPI I/O ac-
cording to the user specifications. We have the option to write this file in a partition-
independent way to restart with a different number of MPI tasks.

2https://gitlab.com/bsc-alya/alya

https://gitlab.com/bsc-alya/alya 
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2.2.3 Potential strategies

We outline potential strategies for enhancing scalability, numerical properties, energy effi-
ciency, as well as execution time. We consider to explore a possibility to crop precision in
the Alya solvers with the help of the mixed-precision approach reinforced by the iterative
refinement. With the explicit scheme, the rounding errors have a tendency to accumulate
and have a larger impact, especially on the later stages of computations. The idea is to
commence with lower precision and increase the precision later at the higher iterations
count.
For better resources utilization as well as to adapt to the heterogeneous environments as
on the modern HPC systems, we intend to enhance the work on load balancing (now done
with the DLB library) and vectorization. Exploring other matrix storage formats is also
foreseen for the purpose of reducing the data movement, e.g. for sparse matrices. Porting
to GPUs is a part of the CEEC involvement of the Alya’s team.
From the user feedback, the check-pointing strategy we are following seems to be sufficient.
But, any smart fault-tolerance solution is welcome. We had the possibility to use FTI for
fault tolerance, but this is no longer maintained.

2.3 Neko
2.3.1 Description

Neko [10] is a portable framework for high-order spectral element based simulations on
hexahedral meshes, mainly focusing on incompressible flow simulations. Neko has its
roots in the spectral element code Nek5000 from UChicago/ ANL, from where many
of the namings, code structure and numerical methods are adopted. The framework is
written in modern Fortran and adopts an object-oriented approach, allowing for multi-tier
abstractions of the solver stack and facilitating various hardware backends, ranging from
general-purpose processors, accelerators to vector processors, and as well as limited FPGA
support. Neko focuses on single core/ single accelerator efficiency via fast tensor product
operator evaluations. For high-order methods, assembling either the local element matrix
or the full stiffness matrix is prohibitively expensive. Therefore, a key to achieving good
performance in spectral element methods is to consider a matrix-free formulation, where
one always works with the unassembled matrix on a per-element basis. Gather–scatter
operations are used to ensure continuity of functions on the element level, operating on
both intra-node and inter-node element data. Currently, Neko uses MPI for inter-node
parallelism and parallel I/O for production runs. However, one-sided options such as
Coarray Fortran based gather-scatter kernels are under development.
The primary consideration in Neko is how to efficiently utilize different computer back-
ends without re-implementing the whole framework for each backend while maintaining
the core of the solver in modern Fortran. We solve this problem by considering the weak
form of the equations used in the spectral element method. The weak formulation allows
us to formulate equations as abstract problems which enable us to keep the abstractions
at the top level of the software stack and reduce the amount of platform-dependent kernels
to a minimum. The multi-tier abstractions in Neko are realized using abstract Fortran
types. These abstract types describe a flow solver’s common parts, from how to compute
a time-step in a solver, function spaces and various fields, as well as matrix-vector and
gather-scatter kernels. Furthermore, these abstract types are associated with an actual
implementation in an extended derived type, allowing for hardware or programming model
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specific implementations, all interchangeable at runtime. This way, Neko can accommo-
date different backends with both native and offloading type execution models without
unnecessary code duplication in the solver stack.

2.3.2 Requirements

Underlying algorithmic solvers and (simplified) test cases Proxy-applications are
available for key kernels, however they are not representative for large cases. Due to
that, it is better to use available scaled down problems as for FLEXI. Few simplified test
cases (preferably with the runtime within several minutes to begin with) are available on
the Neko public GitHub repository3.
The underlying solvers are matrix-free Krylov solvers: Generalized minimal residual
method (GMRES), Conjugate Gradient (CG), and pipelined CG (pipe-CG). These solvers
use various preconditioners: block Jacobi and hybrid additive Schwarz. The solvers are
coupled within the code. While mixed-precision versions of the solvers or their alternatives
can be tested outside, it is still easy to change between solvers that follows the matrix-
free SEM approach. Furthermore, the solvers are matrix free; there is no straightforward
possibility to form a matrix for testing outside the code.

Fault tolerance Neko relies on a periodic check-pointing mechanism as the way to enable
fault-resilient executions.
Concerning additional fault-tolerance mechanisms, fault tolerance (e.g. like in ExaFLOW4

by replaying the initialization) would be interesting to consider, or a way to gracefully
check-point after a failure, e.g. using a RAID-type of reconstruction.

Topology optimization Neko does not have an adjoint solver, however, this facility will
be implemented within the scope of CEEC. The same applies to the thermal transport
equation that needs to be solved as a one-way coupled problem and taken into account
in the sensitivity analysis. The code relies upon MPI I/O to exchange information in
massively parallel settings.

2.3.3 Potential strategies

Here, we outline potential strategies for enhancing scalability, numerical properties, energy
footprint, as well as execution time. We consider task-parallel preconditioners to ensure
high GPU utilization. The paper [2] on the Conjugated Gradient method preconditioned
with Block-Jacobi suggests that lowering precision in the preconditioner can be beneficial.
Thus, we foresee to benefit from mixed-precision in preconditioners, e.g. packed fma32 is
necessary for AMD. We intend to propagate the concept of mixed-precision computations
to the underlying Krylov-type solvers as well.
Furthermore, we foresee to employ alternative solvers in the Neko code, e.g. for better
scalability or more robust numerics. For instance, p-MultiGrid (p-MG) plus Algebraic
MultiGrid (AMG) as the pressure solver.

3https://github.com/ExtremeFLOW/neko
4http://exaflow-project.eu

https://github.com/ExtremeFLOW/neko
http://exaflow-project.eu
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2.4 waLBerla
2.4.1 Description

waLBerla (widely applicable Lattice Boltzmann from Erlangen)[3] is a modern open-
source multi-physics simulation software framework with a focus on CFD applications [19].
The main unique feature of waLBerla is its uncompromising focus on large-scale simu-
lations and scalability. It supports the massive parallelism of current peta- and future
exascale supercomputers with a framework of carefully designed distributed data struc-
tures that allow the implementation of many advanced algorithms. Automated testing
ensures the correctness of the functionality across a wide range of target hardware and
software environments and makes it well-suited for robust further developments. Its cur-
rent version also features adaptive techniques. For that it employs a block-structured
partitioning of the simulation domain including support for dynamic grid refinement.
This also includes functionality for load balancing, for check-point-restart, and even au-
tomatic resilience techniques that may become essential on future extreme-scale systems.
waLBerla contains efficient, hardware specific compute kernels to achieve optimal perfor-
mance on most common supercomputing CPU and GPU architectures; the framework5 is
written in C++17 and CUDA. waLBerla has, e.g., been used successfully to implement
phase-field and free surface models, and to study the flow around wind turbines. Further-
more, accurate predictions of the flow through porous media like Diesel filters or sediment
beds have been obtained and used to improve existing macroscopic models. Simulations
of particulate flows have always been a special focus of the group’s effort throughout the
continuous development of waLBerla. The integration of the rigid body physics engines
PE and MESA-PD allows us to model multi-physics scenarios with a granular phase.
With this integration, a close and efficient coupling of fluid and particle simulations is
possible. This is a key component to realize massively parallel simulations of large-scale
particulate systems and constitutes one of the unique features of our framework.

2.4.2 Requirements

Underlying algorithmic solvers and (simplified) test cases There is no dedicated
proxy-application for waLBerla. However, it is possible to generate a simple proxy-
application doing, e.g., a channel flow or a single particle in a fluid flow simulation.
There is Python interface for testing.
To study the underlying algorithmic solutions, we can commence by working on a sim-
plified version of the code with a few small test cases. Such small test cases cover the
relevant functionalities of the code for the CEEC project.
Concerning the underlying sovlers in waLBerla, we use explicit time stepping and do not
have to solve any systems of equations in the form of Ax = b. Thus, there is no need
of any preconditioning techniques. The Lattice Boltzmann method is working on regular
cells (or an Octree), the particle simulation works on data structures for neighbor lists.

Fault tolerance waLBerla supports check-pointing, i.e. the user is able to specify how
often (e.g. after a certain number of time steps) or to configure which data is stored for
each check-point. There is also support of fault-tolerant with MPI [11].

5https://i10git.cs.fau.de/walberla/walberla

https://i10git.cs.fau.de/walberla/walberla
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2.4.3 Potential strategies

Here, we outline potential strategies for enhancing scalability, numerical properties, energy
efficiency, as well as execution time. In order to utilize in full the modern heterogeneous
clusters, we foresee to add support for particles on GPUs in the frame of the CEEC
project.
We explore a possibility of adapting/cropping the working precision of the waLBerla code.
Since the scheme is explicit, the rounding errors have a tendency to accumulate and have
a larger impact, especially on the later stages of computations. A feasible scenario is to
lower precision at the start of computation and gradually increase it toward its end.
Regarding topology optimization, the adjoint solver (back propagation) would be very
interesting for waLBerla. For a note, there are works on the adjoint Lattice Boltzmann
method.
We think that waLBerla can benefit from the optimized I/O or compression techniques
combined with check-pointing. We intend to explore this at CEEC.

2.5 Nek5000/ NekRS
2.5.1 Description

Nek5000 and NekRS6 are highly-efficient and scalable open source incompressible and
low Mach flow solvers [13] employing the spectral element method (SEM), a high-order
weighted residual technique for spatial discretization that can accurately represent com-
plex geometries. Globally, the SEM is based on decomposition of the domain into E
smaller subdomains (elements), which are assumed to be curvilinear hexahedra (bricks)
that conform to the domain boundaries. Locally, functions within each element are ex-
panded as Nth order polynomials cast in tensor-product form, which allow differential
operators on N3 grid points per element to be evaluated with only O(N4) work and O(N3)
storage. The principal advantage of the SEM is that convergence is exponential in N ,
yielding minimal numerical dispersion and dissipation. Significantly fewer grid points per
wavelength are required in order to accurately propagate a signal (or turbulent structure)
over extended times in high Reynolds number simulations. This advantage was demon-
strated in a study at NREL, which showed that, for a given accuracy, turbulent channel
simulations performed with 7th-order spectral elements require half as many grid points
in each direction as do comparable finite-volume-based simulations.
The solution procedure for solving the governing equations is based on a high-order split-
ting scheme, where the hydrodynamic equations are advanced with a backward differ-
ence/ characteristic-based (BDF/ CHAR), time-stepping algorithm developed for the ALE
method [16]. The BDF/ CHAR scheme allows the simulation to overcome CFL restric-
tions imposed by standard schemes such as backward difference/ extrapolation (BDF/
EXT). Nek5000 is equipped with multilevel solvers that scale to millions of cores. The
multilevel solvers require global coarse-grid solves that are based on fast direct solvers
developed in Tufo and Fischer [17]. The pressure substep requires a Poisson solve at each
step, which is effected through multigrid-preconditioned GMRES iteration coupled with
temporal projection to find an optimal initial guess. Particularly important components of
Nek5000 are its scalable coarse-grid solvers that are central to parallel multigrid. Counts
of 15 GMRES iterations per timestep for billion-gridpoint problems are typical with the

6https://nek5000.mcs.anl.gov/
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current pressure solver. The GPU-oriented NekRS, which is written in C++/OCCA, is
the refactored version of Nek5000, which is written in F77/C.
Recent activity involves enhancement of Nek5000’s support for combustion and reactive
flows, multiphase (liquid/ gas and fluid-particle-particle interactions), multimodel physics
(e.g., drift-diffusion, combustion, RANS), and moving domains (e.g., rotating machinery,
internal combustion engine, fluid-structure interaction in reactors). In the past several
years Nek5000 has been developed further to include Nonconforming Overlapping Schwarz
Discretizations, including MultiRate timestepping in Overlapping grids, Advanced Mesh-
ing and Mesh Optimization, and a high-order characteristic-based ALE approach for
Moving-Domains.

2.5.2 Requirements

Underlying algorithmic solvers and (simplified) test cases For Nek5000, there is an
archived proxy-application called nekbone, under the Nek5000 Github organization and
could be used for initial testing. There is no proxy app for NekRS but it is possible to
derive a simplified scaled down problems.
There are two CEED benchmarks, BP5 (aka nekbone) and BPS5. The NekRS example
that can be used for such tests is called Kershaw example. These examples are described
in the CEED reports78. BPS5 is a solver benchmark which is about how fast the Poisson
equation can be solved on a deformed mesh. In a sense, it is a proxy of the Nek pressure
solver. BP5 is a benchmark problem which uses a simple Jacobi preconditioner. More
sophisticated preconditioners are used in BPS5, like GMRES with Schwarz and AMG.
To study the underlying algorithmic solutions and to experiment with mixed-precision
and precision cropping strategies, BP5 and BPS5 (Kershaw) benchmarks can be used and
be tuned to the runtime within several minutes.
Concerning the underlying solvers in the codes, there is a set of Krylov-type solvers
used: PCG for BP5 (only the simple Jacobi preconditioner), GMRES, Schwarz and AMG
for BPS5. Few preconditioners are employed along these solvers for better numerical
stability and fast convergence. For instance, Jacobi for velocities and scalars; Schwarz
with spectral and algebraic MG for pressure. Both the solvers and the preconditioners
are tightly coupled within the codes. Furthermore, the solvers are matrix-free; there is no
straightforward possibility to form a matrix for testing outside the code.

Fault tolerance Currently, Nek5000/NekRS have no fault tolerance, but rely on regular
check-pointing. For instance, field files for restart are typically written every hour but not
the entire memory of the application. In case of a hardware (HW) failure, when things
go silently wrong, there is no mechanism in the codes to detect such failures.
To elaborate more on the present state of the check-pointing mechanism, check-pointing
only contains restart information, not storing the whole system state (no particularly good
reason has been identified to do this). There is also a possibility to store the solution
at more than one time steps (up to three steps) for cases where a seamless restart is
important, e.g. in flow stability studies.

7https://ceed.exascaleproject.org/docs/ceed-ms37-report.pdf
8https://www.osti.gov/servlets/purl/1845639
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2.5.3 Potential strategies

We outline potential strategies for enhancing scalability, numerical properties, energy effi-
ciency, as well as execution time. In terms of scalability, we consider to work on addressing
some of the bottlenecks described earlier, e.g. improve strong scaling gather/scatter type
kernels; coarse polynomial and AMG multigrid levels; data layout for low polynomial
degrees.
For faster time-to-solution and/or better energy-to-solution, we intend to engage the
concept of mixed-precision computations into the underlying Krylov-type solvers and
in preconditioners. Particularly, since lowering precision in preconditioners yields to be
successful for some cases, we foresee to utilize mixed-precision in preconditioners.
Concerning support of fault-tolerance mechanisms, we would like to explore how to check
types of HW failures. For instance, how to check if simulation deadlocks and the solvers
stop converging, etc.

3 Strategies definition
Here, we define strategies and present algorithmic approaches toward reliable, resilient,
efficient, and fast algorithmic solvers in the consortium CFD codes for Exascale. We
cover all the tasks of WP3 and address below algorithmic solvers, mixed-precision, fault
tolerance, adaptivity and error control, as well as topology optimization. Timeline for the
planned work and corresponding deliverables follows the one from the Grant Agreement.

3.1 Numerical methods and solvers for Exascale
To enable the next generation of exascale CFD simulations, we need to significantly im-
prove existing methods in terms of both scalability and numerical properties. We focus
on the scalability issues associated with iterative Krylov methods and the algorithmic
challenges of formulating scalable algebraic multigrid methods (AMG) with optimal con-
vergence properties. Specifically, we will address the scalability and numerical issues by
considering communication- avoiding and communication-hiding algorithmic variants, in-
cluding pipelined Krylov formulations. The pipelined methods will be reinforsed with the
residual replacement and restarting techniques. In addition, we will develop a novel non-
heuristic parallelization of optimal coarsening algorithms for AMG with suitable mixed
(combining geometric and algebraic) approaches to enable its use in matrix-free formu-
lations, either as a standalone solver or as a scalable preconditioner inside an iterative
Krylov method.

3.2 Mixed-precision algorithms
Due to the energy consumption constraint for large-scale computing that encourages the
revision of the architecture design, scientists also review the applications and the under-
lying algorithms organization. The main aim is to make computing sustainable and apply
the lagom principle (“not too much, not too little, the right amount”), especially when
it comes to the compute/ storage precision. Thus, we introduce an approach to address
the issue of sustainable, but still reliable, computations from the perspective of computer
arithmetic tools such as Verificarlo [6] and Verrou [8]. We propose to inspect the consor-
tium codes with the help of computer arithmetic tools to investigate precision appetites
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as well as to identify numerical abnormalities. Based on this analysis, we can propose
a strategy for cropping precisions. One promising strategy is to reduce the data move-
ment but still compute in full precision. For implicit iterative solvers, reducing precision
of data storage for a matrix of preconditioners is one of promising choices. For explicit
solvers, we consider to start with lower precision and increase the working precision dur-
ing the course of computations in order to mitigate the effect of round-off accumulation.
These efforts will lead to the revision of algorithms. Such strategy can be reinforced with
communication-avoiding and/or -hiding strategies such as pipelined methods, e.g. in the
Neko code. This way the communication and, hence, data movement will be decreased
even further. To accommodate the requirement of more accurate computation, e.g. 10−8

and higher, the pipelined methods can be reinforsed with the residual replacement and
restarting technique. Alternatively, we can leverage the iterative refinement procedure
and floating-point expansions [1].

Inspection with tools → Strategy → Revision of algorithms

Overall, our strategy for mixed-precision and, thus, energy-efficient and/ or faster com-
putations can be summarized in the following four steps.

1. Apply arithmetic tool to the code → manual/ automatic in order to inspection
precision appetites.

2. If the reduction is possible, derive and apply algorithmic mixed-precision
solutions following the suggestions from the tools. Here we can also explore a
possibility of using iterative refinement to tune the accuracy to the desired level
while using lower precisions.

3. Conduct probabilistic (aka optimistic) error analysis. This is a fascinating
but a bit out of scope topic to the CEEC project:

• The error bound with constant
√
nµ with high probability instead of nµ as in

case of summation.
4. Implement on heterogeneous hardware, possibly with stochastic rounding that

randomly maps x to one of two bounds.
The main focus of the algorithmic development within CEEC is on the steps 1, 2, and
4 that will result in algorithmic solutions and implementations for scalable, faster, and
possibly more energy-efficient computations in the consortium codes.
Compared to the algorithmic works on mixing precisions and still deriving the same
accuracy as with the original (often double) precision, we will explore a possibility of
sacrificing few bits of accuracy for faster and more energy efficient executions under the
constraint of numerically reliable and meaningful computations.

3.3 Fault-resilience algorithms
With respect to fault-tolerant or fault-resilient algorithms, most CEEC codes rely on a
basic strategies like check-pointing together with the generation of restart files at par-
ticular instances. Only the FLEXI code relies on the evaluation of a performance index
with the option to terminate simulation in case this performance index exceeds the given
threshold. In addition, our codes offers the possibility to restart with a different number
of MPI tasks. This approach is a very helpful feature in a post-fault scenario where a
simulation has to be restarted on a different number of nodes as initially intended. The
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check-point and restart approach does not include a pre-fault or fault detection step and
includes the restart of the entire simulation. In total, none of the codes offers any ad-
vanced fault tolerance approaches to react or recover instantaneously on a faulty node
for example via a local mitigation strategy. Thus, advanced resilience and fault tolerance
strategies, as summarized for example in [4], are required and have to be incorporated
into the CEEC codes. To develop or include advanced fault tolerance or fault-resilient
algorithms the following step-wise approach is proposed:

1. Analysis of classical fault mechanisms on HPC systems of interest with the help of
hardware producers and involved computer centers. Within this step, a list of fault
mechanisms on the different HPC systems of interest is generated with the aim to
obtain an overview on possible faults to be expected.

2. Classification of fault mechanism. The list of fault mechanisms is reviewed in terms
of relevance, like the mean time between failure (MTBF) for example, and the
potential to recover from the CEEC applications, i.e., software point of view. The
resulting rating will serve as an input for mitigation strategies to be applied.

3. Analysis of needed software-based, i.e., user-level mitigation strategies, frameworks
and tools. Basing on the rating from the previous step suitable mitigation strate-
gies are identified and proposed. This strategies might be available already via
existing frameworks and tools like Fenix or plain MPI functionalities for example.
On the other hand further developments might be needed. Here, the CEEC-code
PyCOMPSs (BSC) may be considered to re-distribute tasks from a faulty node to
spare nodes. Beside these node-level strategies one might also think about algorith-
mic resilience.

4. Development and integration of selected approaches and testing. Once mitigation
strategies are identified these strategies are married with the CEEC codes. After-
wards testing of implemented functionalities basing on fault-injection frameworks
like FAIL is proposed.

5. Application within the LHC simulations. The integrated mitigation strategies will
applied within the simulation of the lighthouse cases.

3.4 Adaptivity and error control
Large-scale nonlinear simulations of industrially relevant turbulent flows at realistic Reynolds
numbers are computationally extremely expensive and currently intractable. They have
to be performed with highly parallel codes based on accurate discretization methods of
high order and require special techniques allowing for minimization of the computational
effort and optimal usage of the resources. Although automated mesh adaptivity offers
the potential for improved accuracy at reduced cost and its benefits have been known for
three decades, it is not widely used due to software complexity, stability issues and lack of
proper error estimators and efficient refinement strategies for complex geometries. CEEC
will focus on enabling robust adaptive at exascale, guided by accurate error indicators.
Developing scalable adaptive mechanisms specific to high-order methods by combining
adaptation in polynomial order (p-adaption) and element topology (h-adaption), enabling
efficient tracking of complex flow features at a low computational cost. In addition, these
mechanics will be combined with novel solution-driven adaptation in floating-point pre-
cision (fp-adaption), further reducing the computational and energy costs. The new
algorithmic development will build upon previous work concentrating on goal-oriented es-
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timation techniques e.g., based on the adjoint and spectral error estimators for high-order
methods [15, 14], and will mainly be integrated in Neko to reduce the computational cost
of LHC6.

3.5 Scalable optimization algorithms
The main algorithmic development needed for the successful completion of LHC3 —
topology optimization of static mixers — will be based on resolving some optimization-
specific issues and providing components to be integrated into the Neko code, as outlined
below.

1. The first task is to provide Neko with an adjoint-equation solver for the efficient
computation of sensitivities, preferably using an exact formulation not assuming
pointwise divergence-free velocity fields as in Nek5000.

2. Also, an efficient check-pointing scheme is paramount. The same strategy as in
Nek5000, based on the Revolve algorithm [9], will be used also here.

3. Additional attention must be given to issues concerning the unstable nature of the
adjoint equation for chaotic transient problems. Strategies include simplification,
in which the chaotic motion is suppressed for the adjoint evaluation, or the use of
time-averaged sampling.

4. The optimization of the fluid mixer requires the solution to an additional scalar
transient thermal transport equation. The problem is one-way coupled and hence,
the thermal transport does not couple back into the forward fluid problem. However,
its contribution must be accounted for in the adjoint sensitivity analysis.

5. Another equally important issue concerns the high-order nature of the spectral finite
element method. In order to achieve a sufficiently fine design representation, multi-
level and/or multi-resolution parameterizations will be investigated. This work in-
cludes strategies to suppress under- and overshooting of design variable bounds and
the development of efficient convolution type filters in a massively parallel setting.

6. An efficient optimization algorithm must be integrated in order to achieve the op-
timized design within a minimum amount of time and with a minimum use of
computational resources. The algorithm could involve the utilization of a multi-
level design representation, such that slow moving structural features on the fine
grid can advect faster using coarse grid information.

4 Summary
In this deliverable, we have provided analysis of the CEEC codes and underlying solvers
with the engagement and outputs from the code owners in the form of the detailed ques-
tionnaire. Based on the provided answers and regular internal discussions, we have de-
rived both requirements and potential strategies for improving algorithms and for efficient
exploitation of Exascale architectures for each individual code. Furthermore, we have de-
fined approaches toward reliable, resilient, efficient, and fast algorithmic solvers in the
consortium CFD codes for Exascale, covering algorithmic solvers, mixed precision, fault
tolerance, adaptivity and error control, as well as topology optimization.
The next steps in WP3 are focused on the implementation of the defined strategies and
approaches, integration into the CEEC codes, and their validation and verification within
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the lighthouse cases at scale.
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