
HORIZON-EUROHPC-JU-2021-COE-01

CEEC – Centre of Excellence in Exascale CFD
Grant Agreement Number: 101093393

D2.2 – Approach to code generation
WP2: Software and performance engineering

Copyright© 2023 – 2026 The CEEC Consortium Partners

The opinions of the authors expressed in this document do not necessarily reflect the
official opinion of the CEEC partners nor of the European Commission.



D2.2 – Approach to code generation 2

Document Information

Deliverable Number D2.2
Deliverable Name Approach to code generation
Due Date 31/12/2023 (PM 8)
Deliverable lead FAU
Authors Kajol Kulkarni (FAU)
Responsible Author Kajol Kulkarni (FAU), kajol.kulkarni@fau.de
Keywords Automatic code generation techniques
WP WP2
Nature R
Dissemination Level PU
Final Version Date 31/12/2023
Reviewed by Adam Peplinski (KTH), Niclas Jansson (KTH)
MGT Board Approval 31/12/2023

Acknowledgment:

Funded by the European Union. This work has received funding from the European
High Performance Computing Joint Undertaking (JU) and Sweden, Germany, Spain,
Greece, and Denmark under grant agreement No 101093393.



D2.2 – Approach to code generation 3

Document History
Partner Date Comment Version

FAU 02/12/23 Initial version 0.1
FAU 08/12/23 Corrected version 0.2
FAU 20/12/23 Final version 1.0



D2.2 – Approach to code generation 4

Executive Summary
This document outlines the second deliverable for Work Package 2, focused on ’Software
and Performance Engineering’ within the Centre of Excellence for Exascale Computational
Fluid Dynamics (CEEC) project. Within the scope of the CEEC project, the focus is
on enhancing computational fluid dynamics (CFD) software frameworks. The goal is
to optimize CFD software frameworks to efficiently harness the capabilities of the top
European supercomputers for six designated lighthouse cases. These cases specifically
tackle intricate problems within the realm of CFD.
Deliverable 2.2, identified as ’Code Generation Techniques,’ offers a comprehensive overview
of the observations made during the assessment of how code generation methodologies
have been applied across diverse applications within CEEC. Within the scope of Work
Package 2, this framework assumes a pivotal role, automating repetitive tasks, ensuring
coding styles are consistent, and expediting the iterative prototyping process. Moreover,
it plays a crucial role in the domain of performance optimization by tailoring code to
specific hardware platforms and facilitating the adoption of domain-specific languages
tailored to the distinctive requirements of specific problem domains.
The code generation techniques documented in this deliverable reflect the current state
of the software frameworks. Project partners will utilize this information to assess possi-
bilities for enhancements and collaboration among the frameworks.



D2.2 – Approach to code generation 5

Contents
1 Introduction 6

2 FLEXI 7

3 Alya 8

4 Nek5000/NekRS 9

5 Neko 10

6 waLBerla 11

7 Conclusion and Outlook 12



D2.2 – Approach to code generation 6

1 Introduction
The Center of Excellence for Exascale Computational Fluid Dynamics (CEEC) focuses
on enhancing computational fluid dynamics software frameworks, enabling six lighthouse
cases to efficiently leverage the capabilities of leading EU supercomputers. These sce-
narios address complex challenges in the CFD field. The simulations demand substantial
computing resources to achieve high-fidelity results and meaningful insights. CEEC’s ef-
forts are focused on optimizing CFD software frameworks to meet these computational
demands, ensuring that the simulations run efficiently and effectively on the advanced
hardware of the top EU supercomputers.
The deliverable presents an in-depth examination of the current situation of five major
codes in CEEC: FLEXI, Alya, Nek5000/NekRS, Neko, and waLBerla. The assessment
specifically focuses on the incorporation of code generation techniques within these codes.
It aims to elucidate how effectively these codes leverage automated code generation to
enhance productivity, improve code quality, and optimize performance. For codes that
do utilize such techniques, the document delves into the strategies employed and their
impact on efficiency. For codes that do not currently leverage code generation, the report
explores the potential benefits and possibilities for incorporating these techniques in the
future.
In the goal of optimizing computational fluid dynamics (CFD) algorithms, much effort
is given to customizing code for various architectures, such as graphics processing units
(GPUs) and central processing units (CPUs). This process involves a meticulous ex-
amination of key factors to ensure the efficient utilization of hardware resources and
the seamless adaptation of code to varying computing environments. Furthermore, the
generated code’s characteristics across different dimensions – portability on diverse archi-
tectures, productivity, performance, and scalability, as well as energy efficiency on various
HPC systems – merit thorough exploration. Understanding how the generated code aligns
with these criteria is essential for gauging its adaptability, usability, and impact on overall
system efficiency.
By strengthening the code generation, our objective is to equip code developers with the
essential tools to address challenges and fully harness the capabilities inherent in code
generation techniques for scientific simulations. The meticulous analysis presented in the
subsequent sections delves into the current state of the code generation and performance
tracking infrastructure for FLEXI, Alya, Nek5000/NekRS, Neko, and waLBerla. This ex-
amination not only forms the basis for potential advancements in both code development
and performance analysis but also sheds light on the nuanced considerations in tailoring
code for diverse architectures. As we explore the generated code’s portability, productiv-
ity, performance, scalability, and energy efficiency on various HPC systems, the insights
derived from this analysis will prove instrumental for project partners.



D2.2 – Approach to code generation 7

2 FLEXI
Currently, FLEXI does not use automatic code generation, and there are no plans for it
in the near future. The focus is on supporting both CPU and GPU architectures by using
dedicated implementations for each. The next step involves adding abstraction layers
to handle different architectures and vendors more efficiently. While there’s a potential
interest in exploring automatic code generation for optimization, there are no definite
plans in that direction at this time. The immediate goal is to improve and adapt the
existing codebase for diverse hardware setups.



D2.2 – Approach to code generation 8

3 Alya
Alya, is a powerful multi-physics simulation tool designed for efficient supercomputing,
emphasizing heterogeneous architectures. Although, it does not use code generation tech-
niques. Alya excels in engineering simulations, utilizing finite element formulations, un-
structured meshes, mesh deformation, and parallel solvers. It prioritizes features like
hierarchical parallelism, efficient multiphysics coupling, and comprehensive parallelism
in simulation workflows. The software follows continuous integration practices and is
portable across architectures



D2.2 – Approach to code generation 9

4 Nek5000/NekRS
In the realm of NekRS, automatic code generation, strictly defined, may not be present in
the conventional sense. Instead, the framework employs a dynamic approach to optimiza-
tion during runtime, referred to as runtime specialization. This involves the selection of
specialized kernels from a manually pre-programmed search space based on performance
metrics. The manually crafted search space accounts for various parameters such as poly-
nomial order in Spectral Element Methods (SEM), the distinction between low and high
polynomial orders, the choice between GPU and CPU execution, the specific type of GPU
in use, and the precision (single or double) required for computations. Approximately 10
crucial kernels, integral to the system’s functionality, have multiple versions, each tai-
lored to different configurations. These kernel versions are packaged with the code, and
at runtime, the framework intelligently chooses the most performance-efficient version for
a given problem.
Notably, the code generation process at runtime utilizes the OCCA kernel language [4] to
translate the code into the specific target device language. While this may not align with
the traditional notion of automatic code generation, it effectively achieves adaptability
and optimization for diverse hardware and problem scenarios.
Nek5000 do no employ automatic code generation, users are required to manually con-
struct and implement the code for their simulations.



D2.2 – Approach to code generation 10

5 Neko
Neko does not utilize automatic code generation for optimizing its application. However,
tailoring the code for different architectures, including GPUs and CPUs, by employing
separate backends and implementing hand-tuned code for each architecture. As Neko
does not engage in automatic code generation, specific insights into the generated code’s
portability, productivity, performance, scalability, and energy efficiency on different HPC
systems are not applicable. The optimization strategy centers around manual tuning
for diverse architectures, reflecting a meticulous approach to address specific hardware
nuances and maximize overall application efficiency.



D2.2 – Approach to code generation 11

6 waLBerla
Walberla employs automatic code generation to optimise the framework. The lbmpy
module of waLBerla plays a crucial role in automatically generating code for enhanced
portability across various architectures, including GPUs. Demonstrations have showcased
scalable simulations with adaptive mesh refinement and load balancing on up to 2 million
CPU threads (on Juqueen) for trillion-unknown meshes.
lbmpy framework is written in Python, and it generates code in C/C++/LLVM for CPUs,
as well as in CUDA or OpenCL for GPUs. The lbmpy package allows for the specification
of the lattice Boltzmann (LB) scheme in a high-level symbolic representation using SymPy.
The hardware- and problem-specific transformations are then applied automatically, gen-
erating highly efficient code for CPU and GPU. This approach eliminates the need for
manual optimization and ensures flexibility, maintainability, and high performance on
different architectures.
The CFD application uses this code generation framework to obtain scalable and effi-
cient LBM CUDA kernels. lbmpy enables the formulation of LBM methods, such as the
Partially Saturated Cells Method (PSM), through a symbolic representation, generating
optimized and parallel compute kernels. These generated compute kernels are seamlessly
integrated into the simulation framework within waLBerla.
lbmpy utilizes automated code transformations for optimized compute kernels across di-
verse architectures, employing techniques such as loop unrolling and hardware-specific
intrinsic. For GPU implementation, waLBerla facilitates communication hiding, crucial
for multi-GPU simulations with MPI, by dividing the iteration region into inner and
outer parts. The framework prioritizes considerations such as optimizing compute ker-
nels, minimizing memory footprint, and enabling efficient inter-processor communication
for overall improved performance [2]. Further more, waLBerla uses continuous integration
(CI) testing methodologies to test the generated code.
lbmpy leverages a high-level symbolic representation and automated code transformations,
ensuring portability across various architectures and seamless integration into existing
HPC software as external C++ files. Built on the pystencils framework, lbmpy employs
SymPy, enabling interactive development and prototyping on a single workstation. This
approach, coupled with lbmpy’s automation of development tasks, such as loop splitting
and equation reformulation, enhances productivity by minimizing manual optimization
efforts for efficient LBM code development.
lbmpy’s code, drawing on extensive experience in stencil code optimization, is finely tuned
for maximum efficiency and leverages a robust background in systematic performance
engineering. Its support for high parallelism crucially contributes to scalability on modern
computer architectures. Furthermore, validation across compilers and hardware platforms
consistently demonstrates high performance and scalability, complementing its prowess in
lattice Boltzmann simulations achieved through automated transformations, optimized
kernels, and metaprogramming, as well as the use of the framework for efficient multi-
GPU simulations [1, 2].
Fluid-particle simulations on CPU-GPU architectures align closely with A100 GPU mem-
ory bandwidth, underscoring GPU superiority. Minimal overhead in run times and effi-
cient CPU-GPU communication in the hybrid setup emphasize its effectiveness. Promising
weak scaling performance indicates success for large-scale multiphysics simulations with
the hybrid approach [3].



D2.2 – Approach to code generation 12

7 Conclusion and Outlook
This deliverable offers a comprehensive summary of the current state of code generation
on different CEEC applications. In this comprehensive assessment of five major codes
within CEEC: FLEXI, Alya, Nek5000/NekRS, Neko, and waLBerla—the focus has been
on the incorporation of code generation techniques to enhance productivity, code quality,
and performance. The analysis provides valuable insights into the current state of these
codes, their strategies, and the impact on computational efficiency.
FLEXI, a high-order accurate solver, prioritizes support for both CPU and GPU architec-
tures without currently utilizing automatic code generation. The emphasis is on adding
abstraction layers for efficient handling of diverse hardware setups, with potential interest
in future exploration of code generation techniques.
Alya, designed for efficient supercomputing, excels in engineering simulations but does not
currently employ code generation. It follows continuous integration practices, ensuring
portability across architectures, and presents a solid foundation for exascale readiness.
Moreover, in NekRS, automatic code generation is absent, but run-time optimization
dynamically selects specialized kernels from a manually programmed space, considering
factors like polynomial order and hardware specifications, enhancing adaptability for di-
verse scenarios. Code is generated at runtime through OCCA kernel language to specific
target devices, optimizing performance.
Neko adopts a manual tuning approach for different architectures, without using auto-
matic code generation. Specific insights into portability, productivity, and energy effi-
ciency on diverse HPC systems are not applicable.
In contrast, waLBerla stands out with its lbmpy module, employing automatic code gen-
eration for enhanced portability across various architectures, including GPUs. This ap-
proach, based on a high-level symbolic representation, eliminates the need for manual
optimization and ensures flexibility, maintainability, and high performance on different
platforms.
The analysis underscores the diverse strategies employed by CEEC codes in optimizing
computational fluid dynamics algorithms for various architectures. While manual tuning
remains a prevalent approach, the success of waLBerla’s lbmpy module showcases the po-
tential benefits of automated code generation. The outlook for CFD simulations involves
a continued exploration of code generation techniques to address the increasing demands
for high-fidelity results and meaningful insights on advanced HPC systems.
Future efforts could involve collaborative initiatives to share best practices and method-
ologies for code optimization. The incorporation of automatic code generation, as demon-
strated by waLBerla, could be explored further by other codes to enhance adaptability,
usability, and overall system efficiency. Additionally, ongoing advancements in hardware
technologies, such as GPUs, warrant continuous adaptation of code to ensure optimal
performance and scalability.
In conclusion, by prioritizing the enhancement of code generation techniques, the five
codes FLEXI, Alya, Nek5000/NekRS, Neko, and waLBerla can foster a more robust and
efficient development process. This will contribute to advancing work package 2 and
enable researchers to tackle the complex physical problems addressed in the lighthouse
cases with excellent efficiency and stable codes.



D2.2 – Approach to code generation 13

Bibliography
[1] Martin Bauer, Harald Köstler, and Ulrich Rüde. lbmpy: Automatic code generation

for efficient parallel lattice boltzmann methods. Journal of Computational Science,
49:101269, 2021.

[2] M. Holzer, M. Bauer, H. Köstler, and U. Rüde. Highly efficient lattice boltzmann
multiphase simulations of immiscible fluids at high-density ratios on cpus and gpus
through code generation. The International Journal of High Performance Computing
Applications, 35(4):413–427, 2021.

[3] Samuel Kemmler, Christoph Rettinger, and Harald Köstler. Efficient and scalable hy-
brid fluid-particle simulations with geometrically resolved particles on heterogeneous
cpu-gpu architectures. Journal of Computational Science 49, 2023.

[4] David S Medina, Amik St-Cyr, and Tim Warburton. Occa: A unified approach to
multi-threading languages. arXiv preprint arXiv:1403.0968, 2014.


