
HORIZON-EUROHPC-JU-2021-COE-01

CEEC – Centre of Excellence in Exascale CFD
Grant Agreement Number: 101093393

D1.2 – Definition of a common benchmark test
case

WP1: Exascale light-house cases

Copyright© 2023 – 2026 The CEEC Consortium Partners

The opinions of the authors expressed in this document do not necessarily reflect the
official opinion of the CEEC partners nor of the European Commission.

D1.2– Definition of a common benchmark test case 2

Document Information

Deliverable Number D1.2
Deliverable Name Definition of a common benchmark test case
Due Date 31/12/2023 (PM 12)
Deliverable lead BAM
Authors Samuel Kemmler (BAM)
Responsible Author Samuel Kemmler (BAM), samuel.kemmler@bam.de
Keywords code capabilities, benchmark problems, performance metrics
WP WP1
Nature R
Dissemination Level PU
Final Version Date 31/12/2023
Reviewed by Tim Felle Olsen (DTU), Niclas Jansson (KTH)
MGT Board Approval 31/12/2023

Acknowledgment:

Funded by the European Union. This work has received funding from the European
High Performance Computing Joint Undertaking (JU) and Sweden, Germany, Spain,
Greece, and Denmark under grant agreement No 101093393.

D1.2– Definition of a common benchmark test case 3

Document History

Partner Date Comment Version
WP1 contributors 06/12/23 Initial version 0.1

DTU 07/12/23 Revision 0.1
WP1 contributors 20/12/23 Revised version 0.2

BAM 21/12/23 Final version 1.0

D1.2– Definition of a common benchmark test case 4

Executive Summary
One of the primary goals within the scope of CEEC is improving the performance and
energy efficiency of the five European HPC partner codes, driven by the collection of
the six different light-house cases (LHCs). The deliverable D1.1 provides more details
regarding the LHCs [1]. To achieve this goal, we face the dilemma that, on the one hand,
the final LHCs are only fully developed towards the end of the project, but, on the other
hand, the work on the performance and energy efficiency in WP2/3/4 should be able to
start immediately. To overcome this dilemma, we introduce a set of benchmarks covering
the key functionalities of the LHCs, allowing the performance optimizations in WP2/3/4
to start immediately based on the benchmarks. Each code/LHC pair has collaboratively
developed one or more benchmarks that are common between the corresponding two part-
ners steering their work. Due to the diverse nature of the LHCs and code methodologies,
the benchmarks differ between the code/LHC pairs to precisely tune them towards the
LHC needs.
We first give an overview of the code capabilities, strengths, and weaknesses for the five
European HPC partner codes Flexi, Alya, waLBerla, Neko, and NekRS/Nek5000. Then,
we introduce the benchmark cases for the five codes and the corresponding LHCs. Flexi in-
troduces three distinct benchmark cases to cover the shock-boundary layer interaction and
buffet on wings at the edge of the flight envelope required for LHC1. Those benchmarks
are a Taylor Green vortex-, a wall model- and an LHC-related benchmark. Alya covers
the high-fidelity aeroelastic simulation of LHC2 utilizing a Taylor Green vortex-, tran-
sient cantilever beam, and Turek and Hron FSI benchmark. waLBerla also provides three
benchmarks for representing the functionality of a fully resolved coupled fluid-particle
simulation. A channel flow benchmark covers the fluid phase, a percolation benchmark
as an extension of the channel flow benchmark covers the coupling, and a settling spheres
benchmark tests the particle dynamics. Neko introduces three benchmarks for LHC3
(Topology optimization of static mixers) and LHC6 (Merchant ship hull): a channel flow-
, an immersed boundary method- and a filtering benchmark. Finally, NekRS/Nek5000
uses a GABLS benchmark tailored towards LHC5 (Simulation of Atmospheric Boundary
Layer flows). After introducing the benchmarks, we define performance metrics that will
be used to quantify the performance of the benchmarks. Scaling metrics and energy ef-
ficiency will be used among all codes. However, due to the diverse nature of the solvers,
each code provides one or more individual performance metrics.

D1.2– Definition of a common benchmark test case 5

Contents
1 Introduction 6

2 Overview of code capabilities, strength and weaknesses 7
2.1 Flexi . 7
2.2 Alya . 7
2.3 waLBerla . 8
2.4 Neko . 8
2.5 NekRS/Nek5000 . 9

3 Benchmark cases 11
3.1 Flexi . 11
3.2 Alya . 12
3.3 waLBerla . 14
3.4 Neko . 17
3.5 NekRS/Nek5000 . 18

4 Performance metrics 20
4.1 Common performance metrics . 20
4.2 Flexi . 20
4.3 Alya . 21
4.4 waLBerla . 21
4.5 Neko . 22
4.6 NekRS/Nek5000 . 22

5 Summary 23

D1.2– Definition of a common benchmark test case 6

1 Introduction
The Center of Excellence in Exascale CFD (CEEC) aims to advance state-of-the-art
CFD algorithms and models with the clear goal of enabling exascale performance. This
will be demonstrated by the example of six lighthouse cases (LHCs), which have high
relevance for scientific and industrial applications. The deliverable D1.1 provides more
details regarding the LHCs [1].
To maximize the impact of the CEEC and to ensure that the developments help to meet
the requirements of specified real-world CFD applications for future exascale systems, the
CEEC will employ a co-design process. For this purpose, the CEEC project is organized
around six LHCs, representing challenging problems in the field of CFD that require the
capabilities of these future HPC systems. The LHCs will drive the development of the
codes and workflows such that they will be ready to be used on exascale systems.
The overall goal of the work within this work package (WP1 — ’exascale light-house
cases’), is to provide an overview of code capabilities, equations, regimes, strength and
weaknesses as well as the definition of one or more common benchmark problems and
performance metrics which are used in WPx. These developments are designed to meet
the requirements of the six CEEC LHCs. The six LHCs considered cover a broad range
of CFD applications:

• Shock-Boundary layer interaction and buffet on wings at the edge of the flight
envelope

• High fidelity aeroelastic simulation of the SFB 401 wing in flight conditions
• Topology optimization of static mixers
• Localized erosion of an offshore wind-turbine foundation
• Simulation of Atmospheric Boundary Layer flows
• Merchant ship hull

To achieve our goal of advancing state-of-the-art CFD algorithms and models for the six
LHCs, we face the problem that the final LHCs will only be finalized towards the end of
the project. There, we introduce a set of benchmarks covering the critical functionalities
of the LHCs, aiming to enable the performance optimization in WP2/3/4 to commence
based on these benchmarks. As the benchmarks are carefully tailored towards the LHCs,
the optimizations based on the benchmarks will directly benefit the LHC performance.
As the benchmarks’ pivotal role is steering the work between WP1 and WP2/3/4, they
must cover all the key functionalities within the diverse spectrum of the lighthouse cases.
Given the wide-ranging nature of these cases, we must delineate the benchmarks individ-
ually for each lighthouse case/code. This approach will enable us to effectively tailor the
performance optimization efforts in WP2/3/4 to each lighthouse case’s unique character-
istics and requirements, ensuring a more streamlined and targeted optimization process.
Each code/LHC pair has collaboratively developed one or more benchmarks that are
common between the corresponding two partners steering their work.
In this deliverable, we first give an overview of the code capabilities, strengths, and
weaknesses for the five European HPC partner codes Flexi, Alya, waLBerla, Neko, and
NekRS/Nek5000 in Section 2. Then, we introduce the benchmark cases for the five codes
and the corresponding LHCs in Section 3. Finally, Section 4 defines performance metrics
that will be used to quantify the performance of the benchmarks.

D1.2– Definition of a common benchmark test case 7

2 Overview of code capabilities, strength and weaknesses
In the following, we give an overview of the capabilities, strength and weaknesses of each
code.

2.1 Flexi
The open-source CFD solver FLEXI focuses on the solution of the compressible Navier–
Stokes–Fourier equations (NSE), i.e., the macroscopic level. The NSE are discretized in
space via a high-order discontinuous Galerkin spectral element (DGSE) method. This
renders the scheme highly efficient, especially on parallel systems. Non-linear stability
due to underresolved turbulent structures is ensured via a split-form DGSE method.
Special care has to be taken for discontinuities in the solution, such as shock waves, since
high-order schemes are subject to oscillations at strong discontinuities. To alleviate these
oscillations, discontinuities are adequately captured and a localized artificial viscosity
approach based on a finite volume subcell scheme (similar to h-refinement) is applied
to ensure a high-order accurate scheme in smooth regions. The NSE are integrated in
time using an explicit, high-order, low-storage Runge–Kutta scheme. The primary focus
of FLEXI is on large eddy simulations (LES) from wall-resolved to wall-modeled (and
direct numerical simulations), where analytical and ODE-based wall models are available.
Moreover, local mesh refinement via non-conforming elements is possible.
Turning to the strength and weaknesses of FLEXI, a strong advantage of FLEXI is that
compressibility effects such as shock waves or acoustics can be easily considered since
FLEXI relies on the compressible NSE. Combined with an explicit high-order time inte-
gration, this allows a highly accurate representation of physical effects even on the smallest
time scales. However, explicit schemes impose a time step restriction, which can lead to
a tremendous computational effort, depending on the size of the smallest physical time
scale and the simulation runtime.

2.2 Alya
ALYA/SOD2D constitutes a versatile simulation framework for Fluid-Structure Interaction
(FSI) problems specially crafted for turbulent flow regimes and finite deformation struc-
tural analysis. This framework aims to capitalize on the robust solid mechanics solver
and algebraic coupling strategies of ALYA, synergizing them with the exceptionally efficient
compressible scale-resolving fluid solver of SOD2D.
ALYA is a continuous Galerkin Finite Element multiphysics simulation code designed to
provide flexibility in coupling different physics thanks to its modular structure. In this
sense, ALYA’s kernel provides the parallel infrastructure while each module deals with
a specific physics. In the context of CEEC, the solid mechanics kernel is employed,
which is built following a Total Lagrangian formulation with a Finite Element spatial
discretization and the family of Newmark schemes for the temporal integration, leading
to implicit and explicit solution schemes. When dealing with implicit methods, built-in
solvers and external libraries, such as PETSc and MUMPS, are employed. In turn, the
coupling is performed from an algebraic standpoint and is implemented as a multi-code
approach by exploiting the domain decomposition via MPI. This renders the coupling
independent of discretization while providing flexibility to implement several staggered
solution algorithms, such as Jacobi or Gauss-Seidel, and the usage of high-performance
algorithms, such as Dynamic Load Balance (DLB). At the same time, this strategy enables

D1.2– Definition of a common benchmark test case 8

the utilization of external solvers like SOD2D to deal with some of the physics involved.
Under this setup, the current weakness is essentially the efficiency of the iterative solvers,
algorithmically (in terms of iterations) and thus also computationally (in terms of time).
SOD2D is a hardware-accelerated continuous Galerkin Finite Elements simulation code
conceived for simulating turbulent compressible and incompressible flows over intricate
geometries. Its core relies on the Large Eddy Simulation (LES) and Direct Numerical
Simulation (DNS) approaches, but only the former is of interest to CEEC. In this re-
gard, SOD2D’s LES mathematical model combines Spectral Finite Elements with operator
splittings on the convective term and incorporates the Entropy Viscosity stabilization
model, tailored explicitly to spectral elements. This novel approach addresses the chal-
lenge of minimizing artificial (numerical) diffusion with exceptional efficiency while en-
suring proper stabilization of the solution. The main limitation of SOD2D is the need to
use unstructured hexahedron elements mesh, which is not trivial in industrial geometries.
To reduce this weakness, SOD2D is able to use unstructured meshes generated from the
splitting of fully tetrahedron elements and gluing meshes through hanging nodes.

2.3 waLBerla
The multiphysics framework waLBerla employs the lattice Boltzmann method (LBM)
for fluid dynamics, an alternative to conventional Navier-Stokes solvers. The LBM is a
mesoscopic approach, i.e., neither individual fluid particles, nor the macroscopic quanti-
ties are simulated directly, but particle distribution functions are evolved over time in a
lattice grid based on the Boltzmann equation. It can be shown by the Chapman–Enskog
analysis that the Boltzmann equation recovers the Navier–Stokes equations under certain
conditions. LBM is highly parallelizable, allowing for efficient use of massively paral-
lel high-performance computing resources. It is well-suited for simulating complex flow
phenomena, including multiphase flows (including bubbles), complex geometries/porous
media, heat transfer, and particle transport. On the other hand, the LBM implementation
in waLBerla is currently still weakly compressible.

2.4 Neko
Neko is a portable framework for high-order spectral element-based simulations on hex-
ahedral meshes, mainly focusing on incompressible flow simulations. The framework is
written in modern Fortran and adopts an object-oriented approach, allowing for multi-
tier abstractions of the solver stack and facilitating various hardware backends, ranging
from general-purpose processors, accelerators to vector processors, and as well as limited
FPGA support. Neko focuses on single core/single accelerator efficiency via fast tensor
product operator evaluations.
A matrix-free formulation is considered to achieve good performance in spectral element
methods, where one always works with the unassembled matrix on a per-element basis.
Gather–scatter operations are used to ensure continuity of functions on the element level,
operating on both intra-node and inter-node element data. Currently, Neko uses MPI for
inter-node parallelism and parallel I/O for production runs, but one-sided options such
as Coarray Fortran-based gather-scatter kernels are under development.
Neko’s solver is based on conformal function spaces for both the pressure and momentum
equation (citations) which is referred as PN − PN method. To advance the incompressible
Navier-Stokes equations in time, an implicit explicit scheme relying on backward differ-

D1.2– Definition of a common benchmark test case 9

entiation and k-th order extrapolation is used. For the pressure, a Poisson equation is
solved in each time step, followed by a Helmholtz equation for each of the velocity com-
ponents. Iterative Krylov subspace methods are used for all systems. For the velocities, a
preconditioned Conjugate Gradient (CG) method is applied in combination with a block
Jacobi preconditioner. The Poisson equation is solved via a preconditioned Generalised
Minimal Residual Method (GMRES).
Currently, the main weakness of Neko is the need to use conformal unstructured hexa-
hedral meshes, which makes mesh generation a tedious and challenging task for complex
geometries. Support for non-conformal meshes is planned for 2024, which will mitigate
some of the mesh generation challenges in Neko.

2.5 NekRS/Nek5000
Nek5000/NekRS employ high-order spectral elements in which the solution, data, and test
functions are represented as locally structured N th-order tensor product polynomials on a
set of E globally unstructured curvilinear hexahedral brick elements. The approach yields
two principal benefits. First, for smooth functions such as solutions to the incompressible
Navier–Stokes equations, high-order polynomial expansions yield exponential convergence
with approximation order, implying a significant reduction in the number of unknowns
(n = EN3) required to reach engineering tolerances. Second, the locally structured forms
permit local lexicographical ordering with minimal indirect addressing and, crucially,
the use of tensor-product sum factorization to yield low O(n) storage costs and O(nN)
work complexities. The leading order O(nN) work terms can be cast as small dense
matrix-matrix products (tensor contractions) with favorable O(N) work-to-storage ratios
(computational intensity).
Time integration in Nek5000/NekRS is based on a semi-implicit splitting scheme using
kth-order backward differences (BDFk) to approximate the time derivative coupled with
implicit treatment of the viscous and pressure terms and kth-order extrapolation (EXTk)
for the remaining advection and forcing terms. This approach leads to independent el-
liptic subproblems comprising a Poisson equation for the pressure, a coupled system of
Helmholtz equations for the three velocity components, and an additional Helmholtz
equation for the potential temperature.
The GPU-oriented NekRS, which is written in C++/OCCA, is the refactored version
of Nek5000 which is written in F77/C. NekRS provides access to the standard Nek5000
interface and features (e.g., deformed geometry through an arbitrary Lagrangian–Eulerian
formulation and overlapping domains), allowing users to leverage existing application-
specific source code and data files on GPU-based platforms.
Nek5000, utilizing the high-order spectral element method, excels in delivering high ac-
curacy and geometric flexibility, particularly for intricate fluid flow details and irregular
geometries. Its optimal convergence rates enhance solution accuracy, even with relatively
coarse grids. However, in simulations involving highly complex and dynamic geome-
tries, such as wind turbines, additional considerations are vital for mesh generation to
ensure conformity across elements. Recognized for exceptional performance, scalability,
and portability in parallel computing, Nek5000 excels in large-scale simulations. Its ver-
satility and open-source nature allow users to customize the source code. With NekRS,
the software maintains strengths in performance, scalability, and accuracy, leveraging
GPU computational power for accelerated simulations. The shift to GPU architecture
introduces complexities, requiring user adaptation. As NekRS evolves rapidly, users must

D1.2– Definition of a common benchmark test case 10

stay current with the latest versions to benefit from ongoing improvements and address
potential issues.

D1.2– Definition of a common benchmark test case 11

Figure 1: Instantaneous field solution of the compressible TGV visualized by iso-surfaces
of the Q-criterion colored by the Mach number.

3 Benchmark cases
In the following, we establish one or more benchmarks per code. They cover the relevant
functionality of the final LHC.

3.1 Flexi
The primary focus of LHC1 is on shock-boundary layer interaction and buffet on wings
at the edge of the flight envelope. This renders a wall-resolved LES unfeasible such that
a wall-modeled LES is utilized. In addition, to ensure non-linear stability due to underre-
solved turbulent structures and to alleviate oscillations due to strong shock waves, a split
form DGSE method and a suitable shock capturing scheme based on a finite volume sub-
cell approach are employed, respectively. To adequately assess and track the performance
of these individual parts, it is necessary to define several distinct benchmark cases. This
allows to identify and tackle potential bottlenecks such that further performance and ac-
curacy improvements are possible and predefined milestones are reached. For this, three
benchmark cases are defined, designed to evaluate first the core performance of FLEXI for
the pure DGSE operator, second, for the machine learning based wall-model, and finally,
a benchmark case that covers all functionalities relevant for LHC1.

Taylor Green Vortex Benchmark

With the incompressible Taylor Green vortex (TGV) (M = 0.1) benchmark test case,
the performance and accuracy of the pure DGSE operator is assessed. To evaluate the
shock-capturing capabilities of FLEXI, the compressible TGV with M = 1.25 will be
investigated. The TGV is a common benchmark and composed of sinusoidal turbulent
structures initialized in a periodic, Cartesian box which decays over time; the 3D com-
pressible (M = 1.2) TGV is illustrated in Fig. 1. This renders the TVG suitable to
measure the parallel efficiency and scale-resolving abilities of the baseline solver. This
already includes LHC-related features such as the lifting procedure to compute flow gra-
dients, anti-aliasing methods such as the split form DGSEM, and several post-processing
routines necessary for the LHC1, such as time-averaging.

D1.2– Definition of a common benchmark test case 12

Wall-Model Benchmark

With this benchmark test case, the performance and accuracy of the machine-learning
enhanced wall model have to be evaluated. On the one hand, this benchmark case should
cover complex situations such as transition, shock-boundary layer interactions, and bound-
ary layers with adverse pressure gradients to which the wall model will be applied. On
the other hand, the test case should be straightforward to evaluate without any stability
issues, e.g., due to shock waves, and easily accessible for performance and scaling anal-
yses. To ensure this, the wall models are evaluated using canonical test cases such as a
turbulent channel flow and a periodic hill test case.

LHC Related Benchmark

This benchmark test case will represent a generalization of LHC1 and will be chosen to
assess the performance and accuracy of the solver FLEXI with respect to the features
used in the LHC1. Hence, this benchmark case completely covers all relevant properties
of LHC1. This includes wall-modeled boundary conditions, including the corresponding
evaluation of the interface within the flow domain, a representative fraction of shock
captured elements for the shock buffet case, lifting procedure to compute flow gradients,
anti-aliasing methods such as the split form DGSE method, and further code analyzing
steps. In addition, it should be a test case that can be easily used for scaling tests and
various performance considerations within CEEC. Considering the fact that FLEXI is
based on hexahedral elements, the underlying mesh will be a Cartesian box on which all
necessary features are evaluated.
With these benchmark test cases, we can guarantee that potential bottlenecks in the code
are tackled to enable detailed performance improvements, especially for LHC1, which are
independent of the architecture of the operating system.

3.2 Alya
The LHC2 focuses on the high-fidelity aeroelastic simulation of the SFB 401 wing in a
transonic regime (Ma = 0.8), also known as the HIRENASD wind tunnel model. Thus, the
LHC2 relies on a Fluid-Structure Interaction (FSI) simulation modeling the interaction
between the turbulent flow field and the flexural behavior of the wing. Consequently, the
multiphysics simulation framework must encompass three features: the fluid solver, the
structural solver, and the two-way coupling driver.
In the modular context of ALYA/SOD2D, each feature of FSI features can easily be isolated.
Accordingly, three benchmark tests are proposed to assess a specific feature necessary for
the LHC2. This division not only enables the evaluation of the performance indepen-
dently but also aids in pinpointing potential bottlenecks. The three benchmark tests
include i) the Taylor-Green Vortex (TGV) problem for the fluid solver, ii) a cantilever
beam subjected to transient load for the structural solver, and iii) the Turek and Hron
configuration for the two-way FSI coupling strategy.

Taylor-Green Vortex at M = 1.25

The first test focuses on the accuracy and performance of the fluid solver that lies to
SOD2D solver. The well-known Taylor-Green vortex configuration at a high Mach number
is employed for this purpose.

D1.2– Definition of a common benchmark test case 13

Figure 2: Slices of ∥∇p∥ at x = π illustrating the development and evolution of shocks
and shocklets: left) t = 15 s and right) t = 20 s.

As previously stated, the LHC2 is designed to model fluid behavior within the transonic
regime. Consequently, the impact of compressibility and the formation of shock waves on
wing surfaces may become pronounced. As a result, the TGV at M = 1.25 serves as an
excellent benchmark to evaluate the precision and efficacy of the fluid solver. The objec-
tive is to assess the low-dissipation shock-capturing algorithms of SOD2D for turbulent
compressible flow fields (i.e., in scenarios where turbulence interacts with flow disconti-
nuities, as shown in Fig. 2). The solver should achieve this without introducing undue
dispersion, embodying characteristics akin to a high-order Total Variation Diminishing
algorithm but with minimal numerical dissipation.
Regarding efficiency, the simplicity of the TGV mesh allows us to test performance and
how it is affected by the different interpolation orders without the burden of generating
complex geometrical meshes, allowing us to really push the number of degrees of freedom
of our analysis.

Transient Cantilever Beam test

The second benchmark test evaluates the accuracy and performance of the structural
solver in ALYA through the computation of the transient response of a cantilever beam
subjected to external forces.
The significance of this specific benchmark case lies on two fronts. Firstly, considering the
targeted fluid-structure problem in LHC2 is the HIRENASD wing model, the cantilever
beam geometry and problem statement offer a simplified representation of the wing struc-
ture. Secondly, given the availability of analytical data for this geometry, it enables the
verification of the correct implementation of the finite element method using quadratic
elements. These elements have previously shown efficacy in mitigating locking effects and
enhancing simulation accuracy.
Beyond the physics, this benchmark case serves as a means to monitor the performance en-
hancements of the structural mechanics module. The simplicity of this geometry stream-
lines the mesh refinement procedure, allowing for a thorough examination of code scala-
bility. Consequently, the finite element assembly and the linear solvers’ performance are
explicitly studied in this context.

D1.2– Definition of a common benchmark test case 14

Turek and Hron FSI test

The last benchmark test is the Turek and Hron test, and it targets the assessment of the
accuracy and performance of the coupling strategy for fluid-structure interaction problems
conducted by the kernel of ALYA.
Although the regime of the fluid is not the same as in LHC2, the Turek and Hron config-
uration facilitates the benchmarking of the core of the aforementioned coupling. The test
consists of an incompressible laminar flow around a fixed cylinder with a cantilever beam
of an elastic Saint Venant-Kirchhoff material attached as shown in Fig. 3. Therefore, how
the fluid and the structure interact is close to the HIRENASD wing one, providing insight
into the coupling methods used and the interfaces between Alya and SOD2D. It is worth
noting that the Aiken acceleration scheme is employed herein to attain a precise solution
due to the ratio of fluid and solid densities being one, provoking the well-known added
mass effect. Hence, this test also challenges the convergence of the coupling strategy.

Figure 3: Displacement and velocity fields of the FSI test case.

3.3 waLBerla
LHC4 (Localized erosion in offshore wind-turbine foundations) utilizing the waLBerla
framework is a fluid-solid coupled micromechanical simulation focusing on the behavior
of seabed foundations. This simulation combines a range of methodologies, namely the
lattice Boltzmann method for the fluid simulation, the discrete element method for the
particle simulation, and a two-way coupling of these two components. Given the diverse
nature of this LHC, it is essential to define several performance benchmarks to separate the
evaluation of different components within the simulation. This division allows us a better
understanding of the individual performance characteristics and potential bottlenecks.
As a result, we have defined three distinct benchmarks, each tailored to assess a specific
aspect of the simulation.

Channel Flow Benchmark

This benchmark is dedicated to evaluating the performance of the lattice Boltzmann
method. Channel flow is an established benchmark, enabling us to gauge the base effi-
ciency of the fluid simulation without any particle interactions. Fig. 4 visualizes a 2D
slice of the 3D channel flow benchmark. It is driven by an inflow (velocity) boundary on

D1.2– Definition of a common benchmark test case 15

Figure 4: 2D slice of the channel flow benchmark. Colors indicate the velocity. Flow is
governed by a velocity boundary on the left and density on the right.

the left and outflow (density) on the right. The Hagen–Poiseuille equation describes the
flow.
For such a simple channel flow using the lattice Boltzmann method, setting up a perfor-
mance model is straightforward, which allows us to evaluate the performance and relate
it to the maximum achievable performance.

Percolation Flow Benchmark

The Percolation flow benchmark replicates the channel flow but introduces a two-way
coupling with the fixed particles of a porous granular medium. Before the fluid dynamics,
the particles are mapped into the fluid domain. Afterward, the hydrodynamic forces
and torques acting on the particles are computed. The particles remain fixed in this
benchmark, meaning no particle dynamics are involved. This allows us a performance
comparison with the channel flow benchmark to assess the penalty on the performance and
scalability introduced by the coupling compared to a pure lattice Boltzmann simulation.
Fig. 5 visualizes a 2D slice of the 3D percolation flow benchmark. The particles are
ordered in a regular grid with a fixed offset in the x-direction (flow direction) and without
inter-particle contacts. Every second layer in the flow direction has an offset in y- and
z-direction, resulting in a chessboard pattern. Darcy’s law describes the flow.

Settling Spheres Benchmark

The third benchmark does not consider fluid dynamics at all but consists of spherical
particles settling under the influence of gravity. This benchmark focuses on the perfor-
mance of the particle dynamics simulation. Fig. 6 illustrates the settling after a certain
number of time steps. Initially, the particles are ordered in a regular grid, not touching
each other. At the end of the simulation, all particles reach a stable position within the
settled (quasi-static) arrangement of the granular sample.

By introducing three benchmarks covering the three main components of our numerical
model, we gain a comprehensive understanding of the performance of LHC4. Each bench-

D1.2– Definition of a common benchmark test case 16

Figure 5: 2D slice of the percolation flow benchmark. Flow is governed by a velocity
boundary on the left and density on the right.

Figure 6: Settling spheres benchmark.

D1.2– Definition of a common benchmark test case 17

mark addresses a specific facet of the simulation, ensuring that we can make informed
decisions about system optimization and resource allocation for complex fluid-solid cou-
pling scenarios.

3.4 Neko
Neko will be used for LHC3 (Topology optimization of static mixers) and LHC6 (Merchant
ship hull) to predict the flow in a static mixer configuration and the flow around a Japanese
Bulk Carrier. For the LHCs, DNS, LES, and wall-modeled LES simulations are envisaged.
The proposed benchmark cases are intended to pave the way for the LHC simulations by
addressing particular features and functionalities to be tested.

Channel Flow at Reτ = 300 Benchmark

For LHC3, the turbulent internal flow inside a static mixer has to be considered, whereas
the geometry is of a relatively complex type and subject to optimization. In the first step,
an internal flow configuration, here a classical channel flow at Reτ = 300, is selected, to
benchmark the performance of the code Neko against reference DNS data like averaged
velocities, second order turbulence statistics and averaged wall shear stress τw. A pressure
gradient drives the flow, and periodic boundary conditions are applied in the streamwise
and spanwise directions.
Since the mixing of species or fluid phases is of interest in LHC3, this case will also be
used to evaluate the correct implementation of the Eularian-Eularian approach to handle
the transport of a passive scalar, for example.

Benchmark for Immersed Boundary Method

The design representation of the static mixer in LHC3 utilizes the immersed boundary
method, which is currently under development in the framework of WP3. Before applying
this method within the optimization cycle, a benchmark is required to prove the correct-
ness of the implementation on the one hand and to obtain initial performance metrics on
the other hand. At this stage of the project, the test case is intended to be composed
out of a channel flow configuration (as above) with an immersed cylinder located on the
channel center line.

Filtering Benchmark

For the topology optimisation (LHC3), repeated filter operations are needed to go be-
tween the various density formulations of the design, and implement size control. In our
previous work, this was achieved using convolutional filters. These are efficient mathemat-
ically, however they pose significant performance issues when implemented in a parallel
code. Global reduction operations involving neighbours that are within the kernel size are
necessary. In particular for unstructured meshes, or meshes with local refinement, such
convolutions are costly. Therefore, we are investigating the use of differential (or casual)
filters also for density-based topology optimisation. In this way, the existing operators
of the code (Neko) can be re-used to implement a filter with required properties. The
benchmark for the filter is thus intended to monitor both the computational efficiency
and the quality of the results as the implementation is adapted. We will also consider
channel flow geometry with immersed obstacles (similar as for the IBM benchmark), and
apply different filter implementations with different filter charactersitics.

D1.2– Definition of a common benchmark test case 18

Channel Flow at Reτ = 5200: Wall-Model Benchmark

For LHC6, the flow around a ship hull is of particular interest. For this case, the Reynolds
number is estimated to be in the order of O(ReL ≈ 109), which indicates wall-modeled
LES (WMLES) to be the route of choice to predict the flow field. Within WP4, current
advances in machine learning (ML) are combined with wall-models. To benchmark this
approach, a channel flow at Reτ = 5200 is considered. For this case, wall-resolved and
wall-modeled LES will be performed to compare results arising from WMLES in combi-
nation with ML-based sub-models, like velocity profiles second order turbulence statistic,
with results from wall-resolved simulations or simulations based on classical algebraic
wall-models. Besides flow physics, the general performance of the ML-based sub-models
is an important parameter to be evaluated to verify a possible gain (time to solution) of
this approach.

Complex Flow Benchmark: Hill or Step

Since the flow around a ship hull is more complex than a simple channel flow scenario,
for example, due to the curved surfaces and adverse pressure gradients or flow separation,
a further benchmark is required to evaluate the ML-based wall models. The benchmark
has to cover the more complex flow behavior while being straightforward in terms of
implementation and computational cost. For this purpose, a canonical test case, the
turbulent flow over a periodic hill (or forward-facing step), will be investigated to evaluate
the performance of the wall models.

3.5 NekRS/Nek5000
In conjunction with LHC5 (Simulation of Atmospheric Boundary Layer flows), we will per-
form high-resolution LES to investigate the stable and convective Atmospheric Boundary
Layers (ABL) to examine the quality of LES solutions and, in particular, their depen-
dence on the mesh, subgrid-scale (SGS) parameters, numerical discretization, and surface
boundary conditions.
To achieve this, we plan to leverage the high-order Nek5000 and NekRS codes, comple-
mented by wall models grounded in the Monin–Obukhov (M–O) similarity theory. These
wall models are specifically tailored for rough surfaces and are well-suited for variational
formulation approaches like the Spectral Element Method (SEM). Collaborative efforts
with scientists from Argonne National Laboratory (ANL) and the National Renewable
Energy Laboratory (NREL) will be integral for cross-verification and validation of LES
results and associated wall models on both CPU and GPU platforms.

GABLS benchmark

In order to facilitate model and code inter-comparison, we have identified the Global
Energy and Water Cycle Experiment (GEWEX) Atmospheric Boundary Layer Study
(GABLS) as a well-documented benchmark problem for stably stratified ABL. The stably
stratified ABL, exemplified by scenarios such as the nocturnal ABL over land, serves as
an excellent benchmark case as the characteristic turbulent scales are notably smaller.
Consequently, the sensitivity of LES to SGS models is accentuated. In this paradigm,
the ground temperature remains cooler than the air temperature, and this cooling trend
persists throughout the simulation, with a domain size of 400 meters in all directions.

D1.2– Definition of a common benchmark test case 19

Figure 7: GABLS domain and x-velocity at t = 7h.

The temporal development of mean velocity and temperature profiles between Nek5000
and NekRS are comprehensively compared, along with the results of several other codes.
Particularly, there is an interest in the height of the peak velocity within the low-level jet
during the quasi-steady evolution of the GABLS problem (after approximately 7 hours), as
well as its maximum value. Acknowledging the persistent requirement for improvements
in SGS turbulence models, augmenting simulation resolution stands as a plausible strategy
to alleviate the reliance on these models and improve accuracy.
An outcome of these comparative simulations is a dedicated initiative to rigorously val-
idate and cross-verify the SGS models. Through this extensive benchmark study, our
goal is to deepen our comprehension of ABL simulations, ultimately contributing to the
improvement and refinement of LES models and codes within the field of atmospheric
science.

D1.2– Definition of a common benchmark test case 20

4 Performance metrics
In this section, we first state the performance metrics we share among all partners and
present the code-specific performance metrics.

4.1 Common performance metrics
We have decided to employ the ”strong scaling,” ”weak scaling,” and ”I/O scaling” perfor-
mance metrics as our standardized evaluation criteria for all benchmarks as they are in-
dependent of the applied methodology or application scenario. These metrics will provide
a comprehensive view of our system’s performance under different scalability scenarios.
Strong scaling measures how the performance of a parallel application changes if one in-
creases the number of compute resources while keeping the problem size constant. Strong
scaling gives insights if the goal is to solve a fixed-size problem as quickly as possible.
Weak scaling evaluates the ability of a parallel system to handle larger problem sizes
efficiently by increasing both the number of compute units and the problem size pro-
portionally. In weak scaling, the goal is to maintain a constant workload per compute
resource. For example, ideal weak scaling would mean that doubling the problem size and
the number of compute resources keeps the execution time constant.
I/O scaling, while being less commonly reported in literature than strong and weak scal-
ing, is crucial for applications that heavily rely on data input and output operations,
which is typically the case for simulations. I/O scaling measures the ability of a parallel
system to manage increasing demands on data storage and transfer as more processors
are used. In many cases, the performance of I/O operations can become a bottleneck,
affecting the overall scalability of the application. Therefore, it should be an essential
part of performance benchmarking and improvement.
Finally, energy efficiency is a key performance metric for large-scale CFD simulations,
whereby higher efficiency values generally indicate a responsible use of (financial) re-
sources and minimize the environmental footprint of the simulations.

4.2 Flexi
Apart from the common performance metrics, FLEXI uses the performance index (PID)
as a primary performance metric. The PID describes the time required to advance one
DOF for a single Runge–Kutta stage and is defined as follows

PID = wall-clock-time · #cores/devices
#DOF · #time steps · #RK-stages . (1)

Since the PID indicates the execution time, a smaller PID implies better performance.
Therefore, the PID allows us to compare the performance for cases with different problem
sizes and resources. It is particularly suitable for explicit codes since the computational
effort for each timestep is the same in contrast to iterative solvers. The PID can be used to
estimate the computation times required for scaling simulation setups to larger simulation
cases since it is almost constant for a given hardware and setup. In the case of FLEXI,
the PID is the underlying metric for the common normalized benchmark metrics, such
as strong and weak scaling. For better comparability between widely differing hardware
architectures (e.g., a system with and without accelerators), it is worth considering the
required power in the PID to take normalized energy usage into account.

D1.2– Definition of a common benchmark test case 21

4.3 Alya
Strong scalability

The performance assessment of ALYA/SOD2D relies on the Performance Optimisation and
Productivity (PoP) Centre of Excellence in HPC, which consists of a multiplicative model
for global efficiency. Theoretically, global efficiency can be obtained by performing a strong
scalability test using a baseline with one single core. As this is impossible in practice
due to time and memory constraints, using a baseline with more than one core will
eventually deviate from the interpretation of the strong scalability. Under this context,
two options exist. On the one hand, the strong scalability is computed using a baseline
obtained with the minimum number of cores, which should be explicitly mentioned for
correct interpretation. On the other hand, we can rely on absolute measures of the
parallel efficiency PE, which can be expressed as PE = LB × CE, where LB is the load
balance and CE is the communication efficiency. These are absolute measures with values
between 0 and 1 that can be obtained using libraries such as the Tracking Application
Life Performance (TALP). Accordingly, the benchmarks for the LHC will provide the
following:

• Strong scalability with baseline obtained with a minimum number of cores.
• Real measures of LB and PE using TALP library.

Timings

ALYA is tested continuously through a performance suite to monitor the performance
variation as the code evolves with each merge to the main branch via the automatic
execution of some benchmark tests, such as the ones proposed for CEEC. This monitoring
saves the history of the optimizations implemented in ALYA. In turn, it serves as an
alarm when a branch has worsened the general performance of the code or when the
supercomputer tested (herein MN4) is failing (IO, gpfs, clock frequency, etc.). As SOD2D
will be coupled as an external library, it will be assessed similarly for the benchmark cases
herein studied. Some of the parameters to be considered will be:

• Solver efficiency
• Time to solve a DoF per GPU (SOD2D)
• Time to solve a DoF per CPU (ALYA)

4.4 waLBerla
For the fluid simulation utilizing the lattice Boltzmann method, which is employed in the
channel flow and percolation flow benchmarks, a standard performance metric used for
evaluation is MLUP/s (Million Lattice Updates Per Second). It is computed as

MLUP/s = #cells · #timesteps
runtime (2)

and is a fundamental indicator of these simulations’ computational efficiency and capa-
bility. MLUP/s can be directly translated into DOF/s (Degrees Of Freedom per Second)
by multiplying it by the number of degrees of freedom per cell, typically 19 or 27. For
particle dynamics simulation, such as the one in the settling spheres benchmark, the rel-
evant performance metric is PUp/s, which stands for Particles Updated Per Second. It is

D1.2– Definition of a common benchmark test case 22

computed as:

PUp/s = #particles · #timesteps
runtime (3)

and is a measure of how effectively the simulation can advance the positions and attributes
of individual particles within the system over a given time frame.

4.5 Neko
The performance assessment for Neko follows the common performance metrics, with
strong scalability as the primary performance figure of merit.
For the performance evaluation, runtime statistics in the form of the average time per
timestep and per individual simulation component per step are collected. Furthermore,
the performance assessments are conducted over an averaging window of a couple of
hundred steps after the initial transient. The position and length of the averaging window
are defined in the case’s input file.

4.6 NekRS/Nek5000
To analyze and improve the efficiency of the two codes, scaling studies are conducted
on our benchmark case. As a metric of the problem’s size, we define n = EN3, where
n is the number of grid points, E the number of spectral elements, and N is the N th-
order polynomial basis. For the strong scaling study, for each case, the same spatial
resolution (number of elements and polynomial order), timestep, and solver tolerances
are maintained. To facilitate accurate timings, performance assessments are conducted
over a time frame wherein the solutions exhibit a representative turbulent flow. For the
weak-scale study, the domain height is fixed while the dimensions are expanded along the
x and y directions (leading to an increase of n). To mitigate initial transient behavior,
the average (wall) time per step, tstep, in seconds is measured over steps 101–200.
An essential metric for evaluating code performance and scaling capabilities is parallel
efficiency. In the context of Nek5000 and NekRS, where the number of processing units
P is represented by CPUs (cores) and GPUs, respectively, the parallel efficiency (Peff) is
defined as follows:

Peff = t0 · P0

tstep · P (4)

where P0 is the smallest value of P processing units that will hold the given problem, and
t0 is the tstep cost corresponding to P0.
In addition to the aforementioned aspects, each Nek5000 job meticulously monitors funda-
mental runtime statistics by employing MPI Wtime, complemented by cudaDeviceSyn-
chronize or CUDA events for NekRS. This comprehensive tracking mechanism offers a
detailed breakdown of crucial metrics related to code performance, including the compu-
tational cost of individual subroutines and I/O operations.

D1.2– Definition of a common benchmark test case 23

5 Summary
This deliverable presented the capabilities, strengths, and weaknesses of the five European
HPC partner codes Flexi, Alya, waLBerla, Neko, and NekRS/Nek5000. Furthermore, we
have introduced benchmark cases for the five codes and the corresponding LHCs. Finally,
we have introduced the performance metrics we will use to investigate the performance of
the given benchmarks. On the one hand, there are performance metrics that are relevant
for all codes, namely strong scaling, weak scaling, I/O scaling, and energy efficiency. On
the other hand, due to the diverse nature of the codes and methodologies, each code also
provides individual performance metrics that are tailored to individual needs.
This deliverable tackles the dilemma that, on the one hand, the final LHCs are only
fully developed towards the end of the project, but, on the other hand, the work on
the performance and energy efficiency in WP2/3/4 should be able to start immediately.
We address this issue by introducing different benchmark problems for each lighthouse
case/code pair, whose purpose is to enable the performance optimization in WP2/3/4 to
commence based on these benchmarks, as the lighthouse cases are not yet finalized.
The benchmarks defined in this deliverable now allow WP2/3/4 to implement their per-
formance and energy efficiency optimizations based on the benchmarks. The specified
performance metrics allow the quantification of different performance aspects and com-
paring them at different development stages and between the codes. However, due to the
essential differences in the underlying solvers and equation systems, a direct comparison of
performance indicators between the different codes is hardly possible. It should be treated
with the utmost caution. Once the benchmarks are built into the CI/CD pipelines, they
will allow us to monitor the performance of the most important LHC functionalities over
time. The work in this deliverable will help to advance the European HPC partner codes
to enable exascale performance for the six LHCs.

Bibliography
[1] CEEC Consortium. Deliverable D1.1 – CEEC exascale lighthouse cases and their

needs, August 2023. Available via https://ceec-coe.eu/.

