
HORIZON-EUROHPC-JU-2021-COE-01

CEEC – Centre of Excellence in Exascale CFD
Grant Agreement Number: 101093393

D1.1 – CEEC exascale lighthouse cases and
their needs

WP1: Exascale light-house cases

Copyright© 2023 – 2026 The CEEC Consortium Partners

The opinions of the authors expressed in this document do not necessarily reflect the
official opinion of the CEEC partners nor of the European Commission.

D1.1 – CEEC exascale lighthouse cases and their needs 2

Document Information

Deliverable Number D1.1
Deliverable Name CEEC exascale lighthouse cases and their needs
Due Date 31/08/2023 (PM 08)
Deliverable lead USTUTT
Authors Daniel Kempf (USTUTT), Anna Schwarz (USTUTT), Ger-

ard Guillamet (BSC), Guillaume Houzeaux (BSC), Adria
Quintanas (BSC), Martin Berggren (UmU), Samuel Kemm-
ler (FAU), Ananias Tomboulides (AUTH), Timofey Mukha
(KTH)

Responsible Author Daniel Kempf (USTUTT) daniel.kempf@iag.uni-
stuttgart.de

Keywords CFD lighthouse cases, resolution/resource requirements,
HPC

WP WP1
Nature R
Dissemination Level PU
Final Version Date 31/08/2023
Reviewed by Niclas Jansson (KTH), Manuel Münsch (FAU)
MGT Board Approval 31/08/2023

Acknowledgment:

Funded by the European Union. This work has received funding from the European
High Performance Computing Joint Undertaking (JU) and Sweden, Germany, Spain,
Greece, and Denmark under grant agreement No 101093393.

D1.1 – CEEC exascale lighthouse cases and their needs 3

Document History

Partner Date Comment Version
USTUTT, FAU 09/04/2023 Define questionnaire for the consortium codes 0.1

BSC
USTUTT 16/05/2023 Initial analysis of the questionnaire outputs 0.2
USTUTT 10/07/2023 Preliminary version with initial input for each

LHC
0.3

USTUTT, KTH, 21/07/2023 Draft of the deliverable for proofreading by each 0.4
BSC, FAU, UmU, LHC representative

DTU, BAM
USTUTT 25/08/2023 Incorporation of the remarks from the first re-

viewer
0.5

USTUTT 30/08/2023 Incorporation of the remarks from the second re-
viewer

0.6

USTUTT 31/08/2023 Final version 1.0

D1.1 – CEEC exascale lighthouse cases and their needs 4

Executive Summary
This document represents deliverable 1 of work package 1 — ’Exascale light-house cases’
of the Centre of Excellence in Exascale CFD (CEEC). The CEEC project aims to de-
velop CFD frameworks that efficiently exploit future exascale systems. For this purpose,
the project is organized around six light-house cases (LHCs), representing challenging
problems in the field of CFD that require the capabilities of these future HPC systems.
Deliverable 1.1 — ’CEEC exascale lighthouse cases and their needs’ marks the completion
of the ’requirements’ phase of this project and represents the second milestone of the
project. After the introduction to the LHCs and the associated codes, an estimation of
the requirements for each LHC will be presented. Here, the targeted problem size in
terms of degrees of freedom, the required memory consumption, target HPC architecture
including the required numbers of CPUs and/or GPUs, I/O needs, and the status of
exascale readiness is presented for each LHC. Synergies that arise between the codes
involved and the developments in the technical work packages are also discussed.
The requirements stated in this deliverable represent a preliminary status. These cannot
yet be finalized because they depend strongly on the further developments within the
project as well as on the further development of the HPC resources and timely availability.
These will be updated internally on a regular basis.

D1.1 – CEEC exascale lighthouse cases and their needs 5

Contents
1 Introduction 7

2 LHC1: Shock-Boundary layer interaction and buffet on wings at the
edge of the flight envelope 7
2.1 Introduction to the lighthouse case . 7
2.2 Linked code and exascale computing . 8

2.2.1 Introduction of the code . 8
2.2.2 Current code status and steps towards exascale readiness 9
2.2.3 Synergies within CEEC . 10

2.3 Computational requirements for the LHC 10

3 LHC2: High fidelity aeroelastic simulation of the SFB 401 wing in flight
conditions 11
3.1 Introduction to the lighthouse case . 11
3.2 Linked code and exascale computing . 13

3.2.1 Introduction of the code . 13
3.2.2 Current code status and steps towards exascale readiness 13
3.2.3 Synergies within CEEC . 14

3.3 Computational requirements for the LHC 15

4 LHC3: Topology optimization of static mixers 15
4.1 Introduction to the lighthouse case . 15
4.2 Linked code and exascale computing . 17

4.2.1 Introduction of the code . 17
4.2.2 Current code status and steps towards exascale readiness 17
4.2.3 Synergies within CEEC . 18

4.3 Computational requirements for the LHC 18

5 LHC4: Localized erosion of an offshore wind-turbine foundation 19
5.1 Introduction to the lighthouse case . 19
5.2 Linked code and exascale computing . 19

5.2.1 Introduction of the code . 19
5.2.2 Current code status and steps towards exascale readiness 20
5.2.3 Synergies within CEEC . 20

5.3 Computational requirements for the LHC 21

6 LHC5: Simulation of Atmospheric Boundary Layer flows 21
6.1 Introduction to the lighthouse case . 21
6.2 Linked code and exascale computing . 22

6.2.1 Introduction of the code . 22
6.2.2 Current code status and steps towards exascale readiness 23
6.2.3 Synergies within CEEC . 24

6.3 Computational requirements for the LHC 24

7 LHC6: Merchant ship hull 26
7.1 Introduction to the lighthouse case . 26

D1.1 – CEEC exascale lighthouse cases and their needs 6

7.2 Linked code and exascale computing . 27
7.2.1 Introduction of the code . 27
7.2.2 Current code status and steps towards exascale readiness 27
7.2.3 Synergies within CEEC . 27

7.3 Computational requirements for the LHC 27

8 Summary 28

D1.1 – CEEC exascale lighthouse cases and their needs 7

1 Introduction
The Center of Excellence in Exascale CFD (CEEC) aims to advance state-of-the-art CFD
algorithms and models with the clear goal to enable exascale performance. This will be
demonstrated by the example of six lighthouse cases (LHCs) which have high relevance
for scientific and industrial applications.
To maximize the impact of the CEEC and to ensure that the developments help to meet
the requirements of specified real-world CFD applications for future exascale systems, the
CEEC will employ a co-design process. For this purpose, the CEEC project is organized
around six LHCs, representing challenging problems in the field of CFD that require the
capabilities of these future HPC systems. The LHCs will drive the development of the
codes and workflows such that they will be ready to be used on exascale systems.
The overall goal of the work within this work package (WP1 — ’exascale light-house
cases’), is to deliver exascale-ready implementations of the codes and workflows which
are developed within the technical work packages WP 2 to WP 5. These developments
are designed to meet the requirements of the six CEEC LHCs. The six LHCs considered
cover a broad range of CFD applications:

• Shock-Boundary layer interaction and buffet on wings at the edge of the flight
envelope

• High fidelity aeroelastic simulation of the SFB 401 wing in flight conditions
• Topology optimization of static mixers
• Localized erosion of an offshore wind-turbine foundation
• Simulation of Atmospheric Boundary Layer flows
• Merchant ship hull

Following this introduction, an individual section is devoted to each of the six LHCs.
Each of the sections covers an introduction to the LHC, a description of the linked code
and the associated status of exascale readiness, synergies that will be deployed within the
CEEC, and finally the computational requirements for the LHC. For the estimation of the
required computational requirements an estimation of the targeted problem size in terms
of degrees of freedom, the required memory consumption, and target HPC architecture
including the required numbers of CPUs and GPUs, I/O needs, and the status of exascale
readiness is presented. However, due to the still early project phase, the figures given
are initial estimations to the best of our knowledge, but all figures are subject to change
during the project.

2 LHC1: Shock-Boundary layer interaction and buffet on
wings at the edge of the flight envelope

2.1 Introduction to the lighthouse case
Modern transport aircraft cruise at transonic flight conditions, where the local accelera-
tion over the suction side of the wing leads to localized supersonic flow. These supersonic
pockets are terminated by normal shock waves, i.e., confined and highly localized regions

D1.1 – CEEC exascale lighthouse cases and their needs 8

Figure 1: Main wing wake structures at high-speed conditions on the main wing of the
Common Research Model (CRM) aircraft. The inset shows a detailed shock-boundary
layer interaction on a wing cross-section. CRM simulation used with friendly permission
from Th. Lutz, Institute for Aerodynamics and Gas Dynamics, University of Stuttgart.

in the flow where all flow quantities undergo drastic changes — the flow becomes ’shocked’.
This is shown in Fig. 1. The strength of these shocks increases with flight Mach number
and Angle of Attack (AoA) and the associated pressure gradients can trigger flow separa-
tion and thus loss of lift. Under certain conditions near the edge of the flight envelope, a
complex interaction between the separated flow field passing over the trailing edge of the
wing and the shock itself can occur, which leads to a low frequency, high amplitude pe-
riodic oscillation of the shock position. This self-sustaining feedback mechanism is called
a shock buffet. It not only leads to high dynamic loads on the wings, a highly unsteady
wing wake, and a rough flight but increased structural fatigue of the wing in the long run.
Thus, understanding and reliably predicting such phenomena is of utmost importance for
flight safety, efficiency, and radical new aircraft design concepts.

2.2 Linked code and exascale computing
2.2.1 Introduction of the code

FLEXI1 is a high-order accurate, open-source solver for general partial differential equa-
tions of hyperbolic/parabolic-type based on the discontinuous variant of the spectral ele-
ment method (SEM), the discontinuous Galerkin (DG) spectral element method (DGSEM)
[4]. This enables an element-local and efficient scheme, even on highly parallel sys-
tems. Its primary area of application are direct numerical and large eddy simulations
(LES) of multiscale- and multi-physics problems, where the fluid phase is governed by
the compressible Navier–Stokes–Fourier equations (NSE), which includes turbulent flows
and shock-turbulence interaction. Since high-order schemes are subject to oscillations
at discontinuities, additional stabilization techniques are necessary to accurately predict
strong compression shock waves across which the flow properties change drastically. In
FLEXI, discontinuities in the solution such as shock waves are handled by shock-capturing
strategies through an elementwise h-refinement strategy in a localized and stable manner.
This approach is based on a finite volume (FV) sub-cell approach, where troubled cells
are switched from a DG to a FV discretization. Another more stable approach relies on
a convex blending of the low-order FV sub-cell with a high-order DG scheme. To ensure
nonlinear stability in underresolved flow regions as occurring in a LES, FLEXI uses a

1https://github.com/flexi-framework/flexi

D1.1 – CEEC exascale lighthouse cases and their needs 9

kinetic energy or entropy stable discretization based on the split form of the advective
terms. Moreover, various closure strategies for the NSE in a LES formulation based on
implicit or explicit modeling are available. High temporal accuracy is ensured through
high-order, low-storage explicit Runge-Kutta (RK) schemes. FLEXI supports unstruc-
tured grids of tensor-product based elements due to the DGSEM and high-order accurate
geometry representation including curved grid cells and hanging nodes. Grid adaptation
is handled through a conservative mortar interface definition.
FLEXI is equipped with high-order capable pre- and post-processing tools. Grid prepara-
tion for high-order schemes, in particular the element surface and volume curving as well
as the mortar connectivity, is handled by the HOPR framework2.

2.2.2 Current code status and steps towards exascale readiness

FLEXI has demonstrated excellent scaling on several supercomputer architectures, includ-
ing Jülich JUGENE, HLRS Hazel Hen/Hawk, and LRZ SuperMUC-NG. Since FLEXI
is designed as a massively parallel code with the MPI paradigm and written in modern
FORTRAN, it consistently uses data structures optimized for continuous, non-overlapping
access. Mesh and solution files are ordered along a space-filling curve, fully utilizing the
multi-threaded capabilities of the underlying file system. During the initialization phase,
the initially unstructured data is reordered into continuous segments optimized for the
selected thread distribution, thereby facilitating single-instruction multiple-data (SIMD)
vector operations and cache utilization. Combined with the small memory footprint of the
DGSEM scheme, FLEXI can achieve optimal performance with as long as 3000 degrees
of freedom (DoF)/core. To further adapt to the individual performance characteristics
of the target machine, the framework utilizes compiler and linker-level techniques such
as profile-guided optimization. To transfer the serial performance to the parallel context,
FLEXI leverages extensively the hardware offloading capabilities provided by the inter-
connect. The highly local DGSEM operator requires only the exchange of surface flux
information which is achieved through non-blocking communication of linear 1D buffers.
Local volume work is utilized for latency hiding with ongoing research to achieve zero-copy
remote memory access communication which eliminates CPU operations and conserves
memory bandwidth. Global communication during runtime is reduced to the minimum
required amount of one data exchange that is necessary to calculate the time increment
of the explicit time-stepping scheme.
In its current state, FLEXI has demonstrated its suitability for both large setups (> 1010

DoFs) and high parallel efficiency [1]. It offers excellent scaling behavior regarding strong
and weak scaling. While the unstructured code sections are well suited for general-purpose
CPUs, the next step in its development is to offload the entire core DGSEM solver to GPUs
to minimize restrictive slow data transfers. Here, we expect that the code has a much
broader optimum and a larger computational load per GPU can be utilized. For this, the
routines are adapted to benefit from the massive parallelism of GPUs. Due to the high
locality and computational intensity, the existing strategies for latency minimization of
the communication will be implemented. When combined with zero-copy communication,
the resulting framework will be able to fully utilize modern hardware capabilities while
remaining portable over a wide range of architectures.

2https://github.com/hopr-framework/hopr

D1.1 – CEEC exascale lighthouse cases and their needs 10

2.2.3 Synergies within CEEC

The following synergies will be leveraged to achieve the common goals of CEEC with
greater efficiency and from which FLEXI and LHC1 can benefit: The performance engi-
neering, continuous integration, testing, and performance tracking strategies and methods
developed within WP2 — ‘software and performance engineering’ will be applied. This
includes, for example, a high-performance implementation of relevant compute kernels
for different architectures. Here, an intensive exchange and transfer of knowledge be-
tween the developers of FLEXI and waLBerla will be considered. The joint efforts in
WP3 — ’exascale algorithms’ consider possibilities from which FLEXI can benefit, e.g.,
mixed-precision algorithms apart from the explicit kernel routine. Moreover, codes that
utilize similar numerical schemes, such as FLEXI and Alya (explicit, compressible CFD
solvers which are SEM-based) can potentially exploit synergies in algorithmic design. In
WP4 — ‘exascale techniques’, we will share our experience and existing methods in the
area of ML and HPC computing with other project partners, namely the codes Alya and
Neko. This is among others the integration of machine learning models in FLEXI utilizing
SmartRedis to enable the coupling with TensorFlow.

2.3 Computational requirements for the LHC
Several intermediate stages are planned on the way to the exascale LHC. The final light-
house case will represent the simulation of a three-dimensional airfoil in a buffet condition,
where a shock oscillates cyclically on the suction side of the airfoil in a transonic flight
condition. For LHC1, a minimum computation time of three buffet cycles is planned.
An increase to at least six cycles for greater statistical confidence in the evaluation is
envisioned for the LHC. Further, based on our experience, about three buffet cycles are
necessary for the start-up process until the cyclic buffet sets in. This value may differ
for the three-dimensional wing configuration. Thereby, one buffet cycle corresponds to
approximately 15 convective time units T ∗ = c/u∞. The exact period length for the
three-dimensional airfoil is currently unknown and a longer period length would cause a
linear increase in computation time.
The targeted lighthouse case requires the simulation of a three-dimensional airfoil with
a spanwise extent of 3.8c, with c being the chord length, including the consideration of
the wing tip. Before that, intermediate steps are planned where a wing segment with
a 0.5c span as a development model and one with a 2c span are investigated. These
numbers serve only as a first estimate since the intermediate steps related to the spanwise
expansion will be appropriately adjusted as the project progresses.
Currently, the following airfoil mesh is assumed for the simulation: The boundary layer is
resolved using a boundary layer grid with a resolution in the range of ∆x/c = 5.1 · 10−3,
∆y/c = 8.7 · 10−4 and ∆z/c = 2.3 · 10−3 per element using a polynomial degree of N = 7.
This accounts for the use of a wall model in the LES (WMLES). The use of a wall model
further leads to no relevant Reynolds number dependence in the considered region and
the boundary layer mesh is not adapted to variations in the Reynolds number. Moreover,
the grid is coarsened towards the free-stream region. To significantly reduce the DoFs, a
stepwise coarsening of the mesh resolution in the spanwise direction towards the far field
is pursued using non-conforming mesh transitions.
Tab. 1 provides estimates for the LHC requirements at a polynomial degree of N = 7.

D1.1 – CEEC exascale lighthouse cases and their needs 11

This includes the number of elements and DoFs, the number of CPUs and GPUs required
for the simulation, the total memory requirements, the total simulation costs without
post-processing, and the estimated file sizes. Data is given for the case normalized to
unit span, the intermediate step 1 with a 0.5c span and 90T ∗ simulation duration, the
intermediate step 2 with a 2c span and 90T ∗ simulation duration, and the final LHC1
case with 3.8c span and 180T ∗ simulation duration.
For the estimation of the required hardware resources, a load of 12 000 DoFs/core was as-
sumed in the CPU case. In the GPU case, the load per GPU is assumed higher compared
to a CPU core. It is estimated by the performance equivalent of one A100 to two nodes
with 128 CPU cores, e.g., AMD EPYC 7742 CPUs. This results in an estimated load
of 3.1M DoFs/device. Concerning memory bandwidth, the DGSEM scheme is computa-
tionally intensive and is generally limited by memory bandwidth such that the program
benefits from an increase in memory bandwidth. Currently, we are not aiming at a specific
HPC system, but are working on having the code run efficiently on as many European
systems as possible.
Since the physical problem in LHC1 is a dynamic process, the output of time-resolved data
is required. A completely resolved output of the volume solution is not possible, therefore
a restartable state as well as a time average with associated turbulence statistics is stored
at each T ∗. Point probes are used for the output of the temporal solution. Approximately
500 000/c samples are utilized for this purpose. The output of the solution takes place
after every 10th time step, resulting in an output of 3500 time steps per convective time
unit T ∗.

Normalized by
c and T ∗

Interm. 1
(0.5c, 90T ∗)

Interm. 2
(2.0c, 90T ∗)

LHC1
(3.8c, 180T ∗)

Elements 2M 1M 3.9M 8.3M
DoFs 1B 0.5B 2B 4.5B

#Cores 84,000 42,000 170,000 375,000
#GPU 330 165 650 1470

Total memory 3 TB 1.5 TB 6 TB 14 TB
Core-h / GPU-h 440K / 2K 10.8M/39K 40M/160K 176M/0.7M

Size states 45 GB 2 TB 8 TB 36 TB
Size average 120 GB 5 TB 21TB 96 TB
Size probes 30 GB 14 TB 6 TB 21 TB

Table 1: Estimation of the required DoFs, hardware resources, and file sizes for LHC1
using FLEXI.

3 LHC2: High fidelity aeroelastic simulation of the SFB
401 wing in flight conditions

3.1 Introduction to the lighthouse case
Wind tunnel simulations are usually stiff and therefore avoid elastic deformations of the
structure and thus aeroelastic effects. However, aeroelastic effects on the aircraft wing
may appear for specific flight conditions, e.g., cruise at transonic speed, and tend to be

D1.1 – CEEC exascale lighthouse cases and their needs 12

Figure 2: Application of a WMLES for the aerodynamic prediction of the flow over a
full aircraft [3] (AoA = 21◦, Reynolds number: Re = 1.7M , Mach number: Ma = 0.17
with a mesh of 2B of cells and solved with 100K CPUs).

a more complex phenomenon to be solved numerically. Thus, multi-physics simulations
of the wing structure and the flow field are necessary to generate realistic and accurate
solutions for the certification of the structure. Typical flight conditions under subsonic and
transonic regimes of civil aircraft (Ma < 1.0) are characterized by strong nonlinearities.
This is depicted in Fig. 2, which illustrates the aerodynamic prediction of the turbulent
flow over a full aircraft in stall conditions. The occurring nonlinearities strongly depend on
high Reynolds numbers and the influence of the transient and steady flow and may induce
shock flow separation or even shock-buffets with unsteady fluid-structure interaction.
Due to the lack of computational methods to solve this kind of problem together with
the elevated computational cost of the coupled problem, this type of simulation may be
impractical without the use of High-Performance Computing (HPC).
In this LHC, an aeroelastic simulation of the SFB 401 wing, also known as the HIRENASD
wing model, in a transonic regime (Ma = 0.8) will be conducted using existing LES mod-
els for compressible flows and the multi-physics code Alya. This simulation reproduces
typical flight conditions under transonic conditions with high Reynolds numbers and elas-
tic deformations for the structural part. This LHC allows to address existing methodology
gaps in the coupling of advanced LES models with structural dynamics. Examples in-
clude the understanding of existing nonlinearities that occur in transonic regimes in real
wing reference configurations, the accurate determination of aeroelastic deformations in
flight conditions, and finally, computational advances for coupled problems towards ex-
ascale computing. Most of these gaps are not covered due to the high cost of coupled
simulations which tends to be not feasible in a production setting and also the lack of
computational methods to solve these problems. With the existing computational cost of
aeroelastic simulations in mind, the LHC2 is attractive to be solved by means of exascale
computing. Thus, advances in efficient parallel CFD (flow part) and CSD (structure part)
solvers for heterogeneous architectures will be strong drivers for aeroelastic simulations.

D1.1 – CEEC exascale lighthouse cases and their needs 13

3.2 Linked code and exascale computing
3.2.1 Introduction of the code

Alya3 is a multi-physics simulation code developed at Barcelona Supercomputing Center
(BSC). From its inception, the Alya code is designed using advanced HPC programming
techniques to solve coupled problems on supercomputers efficiently, especially taking het-
erogeneous architectures into account. The target domain are engineering applications,
with all their particular features. Examples include complex geometries and unstruc-
tured meshes, coupled multi-physics with exotic coupling schemes and physical models,
ill-posed problems or flexibility needs for rapidly including new models. Since its begin-
nings in 2004, Alya has scaled well on an increasing number of processors when solving
single-physics problems such as fluid mechanics, solid mechanics, heat transfer or com-
bustion. Over time, we have strived a concerted effort to maintain and even improve
scalability for multi-physics problems. This poses challenges on multiple fronts, including
numerical models, parallel implementation, physical coupling models, algorithms and so-
lution schemes, and meshing processes. Alya is present in the PRACE benchmark suite
(UEABS) together with Code Saturne in the field of CFD and thus, is considered as the
reference in the EU framework for supercomputing. The core Alya Dev Team has today
around 50 members, distributed among the BSC and its spinoff, ELEM Biotech.
The existing capabilities of the Alya code in terms of LES modeling and multi-physics cou-
plings render this code suitable for the proposed lighthouse case. The fluid-structure in-
teraction simulation concerning this LHC will be performed by coupling Alya and SOD2D
(Spectral high-Order coDe 2 solve partial Differential equations), which is also developed
and maintained at BSC. Alya will control the workflow, perform the projections between
both domains, and solve the structural part. In turn, SOD2D will solve the turbulent
fluid domain employing an LES model and spectral high-order elements. Regarding the
LHC, the flow (CFD part) will be solved using WMLES for compressible flows, while the
structure (CSD part) will be solved by a solid mechanics framework specifically devoted
to transient non-linear problems with large deformations. The implicit Newmark time-
integration scheme will be utilized together with an iterative solver for the resolution of
the algebraic system for the dynamic analysis of the structure, while the CFD part will
be treated explicitly in time. With regards to the coupling algorithm and to preserve the
advantages of the highly adapted CFD and CSM solvers, a partitioned approach with
weak coupling will be conducted. To account for the elastic deformation of the struc-
ture, the Alya mesh deformation tool will be employed which is based on an arbitrary
Lagrangian-Eulerian (ALE) formulation.

3.2.2 Current code status and steps towards exascale readiness

The current implementation of the software incorporates the following features with re-
spect to parallelization. Alya’s kernel and structural mechanics solver employs a master-
worker strategy through MPI to communicate between nodes (coarse level). In turn, it
employs MPI within the node (mid-level) but is also ready to use OpenMP. Alya can also
be used with a runtime dynamic load balance (DLB) strategy to leverage load imbalance
issues. Finally, it exploits the SIMD instructions through the compiler to execute concur-
rent operations in the CPU. The solid domain will be solved using an implicit algorithm

3https://gitlab.com/bsc-alya/alya

D1.1 – CEEC exascale lighthouse cases and their needs 14

which can be a bottleneck of the simulation for two reasons: the stiffness of the matrix,
which can be large, requiring complex preconditioners and the communications of the
solver.
SOD2D uses a fully distributed approach by means of OpenACC and MPI or NCCL.
Depending on the considered hardware, it is possible to utilize CUDA aware MPI commu-
nications, therefore exploiting peer to peer communications. On GPUs, the performance
is greatly enhanced by combining a good fine-grained parallelism strategy with re-usage
of data structures already present on the GPU and single precision arithmetic. Indeed,
all the kernel execution is performed on the GPU, which almost diminishes the issue of
host/device data transfers. Parallelism at the GPU level is achieved by distributing each
element on a mesh to a thread block on the GPU and allowing each nodal operation to
be computed by a single thread of this block. Since each thread has only a few operations
to compute, the GPU warps are able to be activated rather quickly, resulting in excellent
performance over the most taxing kernels. The code has also a small memory footprint,
which would allow for far greater loads per GPU, although at the detriment of scalability.
The bottlenecks of SOD2D are expected to be related with load balancing, efficient use
of shared memory of the GPUs, and the data movement between host and device.
For both Alya and SOD2D codes, the mesh is partitioned using the GEMPA4 library,
included as a submodule in these codes. Regarding the parallel I/O operations, Alya uses
MPIO-tools, a built-in tool to manage binary files, while SOD2D uses HDF5 library.
The next steps towards exascale readiness can be divided into three blocks. First, the
coupling schemes available in Alya’s kernel will be recycled and extended for projecting so-
lutions between non-matching meshes. Specifically, the current algorithm will be extended
to ensure conservative projections between spectral meshes using third order polynomials
involved in the fluid domain and Lagrangian meshes using second order polynomials in
the solid one. Second, the structural solver in the solid domain will be remanufactured for
high-order elements and ported to GPU. The first milestone will be the extension of the
available element library to deal with elements of order higher than two and several node
distribution schemes. The second milestone will be concerned with the porting of the
elemental assembly to GPU using OpenACC directives. The final milestone will address
the porting of solvers to the GPU. For this, Jacobian-free methods or third-party libraries
will be explored. Their use will depend on the requirements of the physical problem,
which are unknown at the current stage. Third, the main work on the fluid side will be
the coupling of Alya and SOD2D, harmonization of data structures, organization, and
improvement of the performance at large scale GPU clusters. A standalone version of
SOD2D is already able to work up to 400 GPUs and meshes up to 4B grid nodes. The
code is based on hybrid OpenACC and MPI or NCCL.

3.2.3 Synergies within CEEC

The following synergies will be leveraged to achieve the common goals of CEEC with
greater efficiency, which will benefit Alya and LHC2: The joint efforts in WP3 – ’exascale
algorithms’ consider possibilities from which Alya could benefit, e.g., mixed-precision
algorithms. Moreover, codes that utilize similar numerical schemes, such as FLEXI and
Alya (explicit, compressible CFD solvers which are SEM-based) could potentially exploit

4https://gitlab.com/rickbp/gempa

D1.1 – CEEC exascale lighthouse cases and their needs 15

synergies. In WP4 – ‘exascale techniques’, the integration of the machine learning models
in SOD2D will be carried out using SmartRedis to enable the coupling with TensorForce
and PyTorch. This could be shared by Alya, FLEXI, and Neko.

3.3 Computational requirements for the LHC
For LHC2, the estimation of the requirements to properly resolve the fluid and solid
phases are the following: Based on similar investigations, our estimation is, that 4B - 8B
DoFs are required to resolve the fluid phase and about 5M - 10M for the solid phase. In
Tab. 2, an estimation of the number of DoFs required to properly resolve the physical
behavior of the coupled simulation is summarized in comparison to similar investigations.
Based on our current information, to compute the LHC simulation with this number of
DoFs, a system with approximately 1000 GPUs (e.g. NVIDIA H100) and 8000 CPUs (e.g.
Intel Sapphire) will be required.
At this point, we estimate that with those required DoFs, each simulation run will generate
about 10 TB of data which is required for further analysis and needs to be stored.

Chwalowski (2011) Hassan (2012) Ritter (2021) CEEC LHC2 (2026)
Fluid 10 - 30M 3.5M 3.7M 4B - 8B
Solid 170 - 200K 200K 200K - 358K 5M - 10M

Table 2: Estimation of the required DoFs for LHC2 for the fluid and solid solver in
comparison to existing simulations.

4 LHC3: Topology optimization of static mixers
4.1 Introduction to the lighthouse case
Static mixers are used in practice since the 1970s for blending fluids in a wide range of
applications ranging from waste-water treatment, food processing to pharmaceutical and
chemical applications. Essentially, a static mixer is a part of a pipe in which the incoming
fluid streams are mixed by the deflection effect of the internal geometry, with the goal of
achieving highest mixing with the least pressure drop. A static mixer is a passive device
without any moving parts. Static mixers are thus very reliable with low maintenance needs
and typically low production costs. To optimize static mixers, a profound understanding
of the fluid mechanics is necessary: The three main mechanisms needed to achieve these
objectives are i) creating and promoting disturbances by additional obstacles in the main
flow, ii) modifying the flow topology by sequentially splitting and recombining the fluid
streams and iii) generating chaotic advection by sequences of bends which promote so-
called secondary flow. In particular, in the turbulent regime, enhanced fluctuation levels
are promoted to exploit turbulent diffusion processes. Given the multiscale nature of
turbulence, both macromixing of the large convective scales connected to the mean flow,
and mesomixing related to the smaller inertial scales, and micromixing at the diffusive
scales need to be considered. The exact working principles of static mixers are typically
part of the trade secrecy, and thus only limited literature exists.

D1.1 – CEEC exascale lighthouse cases and their needs 16

Figure 3: Topology optimized static microfluidic mixer with intricate structure and three
slices illustrating stretching and folding of diffusive interface in convection dominated
transport.

Preliminary research on topology optimization on static mixers in strict convection-
dominated laminar flows, as illustrated in Fig. 3, shows great improvement in the ability
to change the flow topology and increase the diffusion interface. Current implementations
are limited to steady-state incompressible laminar single phase flow resolved by tens of
millions of grid cells; however, industrial scale optimization, flow rates, and relevant flow
details in also turbulent flows require a leap in algorithms and implementations.
Here, topology optimization, based on a mathematical formulation of the respective ob-
jective functions, will be implemented using the code Neko to obtain novel mixer designs,
where the fluid mechanical aspects of the problem are fully resolved. A hierarchy of com-
plexity, ranging from laminar single-phase flow to very complicated chaotic turbulence
flow with multiple phases will be considered, tracking the Pareto front corresponding to
the multi-objective optimization problem. Using the material distribution method for
topology optimization, initial designs may be either open channels or, e.g., innovative
static mixer designs by Westfall, with a specific sequence of fins oriented in vertical and
horizontal planes.
Optimization of large-scale fluid systems is clearly a challenging problem, both from a
purely fluid-dynamics point of view, and from the optimization. Depending on the flow
speed, small scales related to turbulent chaotic motion are created, potentially further
mediated by aspects such as compressibility, heat transfer, and multiple phases including
bubbles and particles. As a point of reference, currently, the largest simulation of a single
phase turbulent pipe flow was run by KTH on 80 billion grid points, consuming several
million CPU hours; for a Reynolds number relevant for turbulent static mixers. For the
optimization, there are two main challenges to be addressed: i) the optimization methods,
including the sensitivity calculation, need to be able to be coupled to high-performance
CFD codes, and need to scale to millions of cores. ii) as static mixers will operate in the
turbulence regime, methods need to be developed to be able to compute sensitivities for
a chaotic system, without leading to a blowup of the adjoint solution. For any further
advancement of the field, such methods are urgently needed.
LHC3 marks the first demonstration of topology optimization of turbulent static mixers
in complex flow situations. This LHC will advance the current state-of-the-art on various
levels: algorithmically for large-scale optimization, mathematically for developing ways to

D1.1 – CEEC exascale lighthouse cases and their needs 17

treat a chaotic system, and computationally to perform large-scale 3D optimization. The
code to be used in the optimization is Neko, given its high accuracy and efficiency. The
impact on industries is immediate, given the various industries ranging from biomedical
to petro-chemical applications.

4.2 Linked code and exascale computing
4.2.1 Introduction of the code

Neko5 is a portable framework for high-order spectral element based simulations, focusing
on the incompressible regime. The framework is written in modern Fortran and adopts an
object-oriented approach, allowing for multi-tier abstractions of the solver stack and facil-
itating various hardware backends, ranging from general-purpose processors, accelerators,
and vector processors, to limited support of FPGA. Neko focuses on single core/single
accelerator efficiency via fast tensor-product operator evaluations. A key to achieving this
is a matrix-free formulation, where one always works with the unassembled matrix on a
per-element basis. Gather–scatter operations are used to ensure continuity of functions
on the element level, operating on both intra-node and inter-node element data.
The primary consideration in Neko is how to efficiently utilize different computer hard-
ware without re-implementing the entire framework for each supported backend. We
solve this problem by hiding the implementation of backend-dependent low-level kernels
behind a common interface realized as an abstract Fortran type. This way, types im-
plementing higher-level concepts, for example, the fluid solver, can remain completely
backend-agnostic.

4.2.2 Current code status and steps towards exascale readiness

Neko has demonstrated excellent strong scaling on several general-purpose processor-
based supercomputers, including Cray XC40 and EX systems (Beskow and Dardel at
PDC), HPE Apollo 9000 (Hawk at HLRS) to clusters with recent vector processors, i.e.,
SX-Aurora (Vulcan at HLRS), achieving more than 70% parallel efficiency with as few as
4-8 elements per processing element. Each backend in Neko have been optimized to best
exploit the underlying hardware and achieves 30% of the theoretical peak performance
when running the CEED BK5 benchmark on AMD EPYC 7742 Rome and 7763 Milan,
and 20% of theoretical peak on a NEC SX-Aurora 10B Vector Engine.
Extreme-scale strong scalability has been demonstrated on the accelerator partition of the
309 PFlop/s European pre-exascale machine LUMI at CSC. The results show that Neko
achieves close to 80% parallel efficiency for a large direct numerical simulation, going from
4096 up to 16,384 AMD MI250X Graphics Compute Dies (GCDs), representing 20%, 40%
and 80% of the entire LUMI supercomputer. Therefore, Neko is, in principle, ready to
be deployed and tested on an exascale machine. However, advanced fault-tolerance and
check-pointing mechanisms needs to be incorporated to address the light-house cases.

5https://github.com/ExtremeFLOW/neko

D1.1 – CEEC exascale lighthouse cases and their needs 18

4.2.3 Synergies within CEEC

The following synergies will be leveraged to achieve the common goals of CEEC with
greater efficiency, which will benefit Neko and LHC3: Through the collaborative efforts
in WP3 – ’exascale algorithms’, we could benefit from mixed-precision in precondition-
ers. This concept will also be propagated to the underlying Krylov-type solvers. Since
the codes Neko, Nek5000, and NekRS have the same roots and therefore, share many
similarities, the efforts in WP3 could potentially be shared by these codes. Moreover,
these similarities can be leveraged for further developments, including strategies for per-
formance measurements and efficient portability to different computing hardware. Fur-
thermore, there are possibilities to develop common approaches for dealing with fault
tolerance, and the software stack for enabling machine learning inference in parallel with
the solvers’ time stepping. Codes based on similar numerical schemes, such as Neko and
FLEXI (both SEM-based, but different flavors) will certainly benefit from discussions of
common problems that arise during the lifetime of the project.

4.3 Computational requirements for the LHC
The main code for this LHC is Neko, and as such both CPU and GPU based machines
can be used. Topology optimization leads to an iterative procedure where the sensitivity
of the density (solid–fluid distribution) is computed using a direct–adjoint simulation,
and update of the design (using a gradient-based algorithm), a new computation of the
sensitivity etc. Therefore, the final compute time is not only given by the resolution
requirements of the case at hand (static mixer), but rather the complexity of the ob-
jective function, and the expected design. Note that one iteration is the combination
of a forward/direct simulation using the usual Navier–Stokes equations, followed by the
solution of the adjoint equations. This latter step required the forward solution to be
available at each time step; this can be achieved with so-called revolve algorithms and
require a re-computation of the forward solution. Thus, the cost of one iteration can
be approximated conservatively by the four-fold cost of one forward solution. Assuming
O(100) iterations for a reasonable design leads to order 400 forward evaluations for one
converged design. This factor obviously limits the size of the flow case, keeping the re-
quired computer time high. Note that additional parallelization techniques can also be
explored, including ensembles, and parallel computation of different designs.
The resolution requirements for a specific case are driven by the complexity and resolution
of the geometry (which is imposed using an immersed boundary method - IBM), and the
expected steady or unsteady flow structures. We focus here on direct numerical simula-
tion, i.e. without the use of a turbulence model. Based on our previous experience using
the spectral-element method for topology optimization, for a moderately complex case
with walls, the number of DoFs is on the order of millions to perhaps 100 million points.
Depending on available resources, we may want to extend this grid count progressively.
To estimate the computational requirements, we consider 15 elements per CPU core as
the minimum, after which parallel efficiency becomes too low (strong scaling limit). For
108 unknowns and polynomial order 7, the number of elements is ≈ 2 · 105. Dividing by
15 gives the estimate of 1.3 · 104 cores. To estimate the number of GPUs, we relate to
existing data for Neko that shows that a single GPU roughly corresponds to a single CPU
node with 128 cores (on e.g. LUMI). This gives ≈ 102 GPUs. Note that Neko has been

D1.1 – CEEC exascale lighthouse cases and their needs 19

DoFs CPUs GPUs Output size
∼ 100M ∼ 104 ∼ 102 ≤ 10TB

Table 3: Estimation of the required hardware resources for topology optimization using
Neko and the disc space used for a whole iteration.

shown to scale with nearly ideal parallel efficiency on up to 16 386 GPUs on LUMI.
Memory size can be relevant for the computation of the adjoint equation, and the number
of snapshots that can be kept in the memory without re-computing. However, the revolve
algorithm ensures and optimal use of the various hierarchies of the memory (RAM, flash,
disk). For I/O, the main issue is the disk space for the storage of the forward solution
(checkpointing), which can be a few TB per simulation/iteration. Thus, tens of TB may
be required for a reasonable simulation campaign. On the other hand, the number of files
per simulation is expected to be unproblematic due to the consistent use of MPI-IO in a
distributed environment. A summary of the required resources is provided in Table 3.

5 LHC4: Localized erosion of an offshore wind-turbine
foundation

5.1 Introduction to the lighthouse case
Suction foundations for offshore wind turbines gain growing relevance as an environmen-
tally friendly alternative to monopile foundations. However, if the operating suction
exceeds a critical threshold during the suction-driven installation, the large hydraulic
gradients within the flow network may cause a localized erosion of soil channels, which
would prevent further installation. For complex marine soils, deriving simple analytical
solutions for the critical suction threshold is often impossible. Instead, physical tests or
predictive numerical simulations are used. Unfortunately, the local fluidization occurring
during piping often appears at the grain-scale, which is not tractable with the conven-
tional macromechanical simulation methods employed for engineering problems. Thus,
this LHC should produce a demonstrator of 3D particle-resolved simulation approaches
for a real-scale geotechnical application, as illustrated in Fig. 4. The first focus is on the
model validation with available experimental results, and then on a grand application
focusing on a representative cut of the full-scale foundation during the first meters of the
suction-driven installation. It should elucidate the unseen microscopic physics of localized
erosive failure of large offshore foundations.

5.2 Linked code and exascale computing
5.2.1 Introduction of the code

waLBerla (widely applicable Lattice Boltzmann (LB) from Erlangen) is a modern open
source multi-physics simulation software framework with a focus on CFD applications.
The main unique feature of waLBerla is its uncompromising focus on large-scale simu-
lations and scalability. It supports the massive parallelism of current peta- and future
exascale supercomputers with a framework of carefully designed distributed data struc-
tures. Automated testing ensures the correctness of the functionality across a wide range

D1.1 – CEEC exascale lighthouse cases and their needs 20

Figure 4: Prototype implementation of the fully-coupled 3D suction-bucket setup at
lab-model scale with waLBerla.

of target hardware and software environments such that it is well-suited for robust further
developments. Its current version also features adaptive techniques. Moreover, it includes
functionalities for load balancing, for checkpoint-restart, and even automatic resilience
techniques that may become essential on future extreme-scale systems. waLBerla con-
tains efficient, hardware specific compute kernels to achieve optimal performance on most
common supercomputing CPU and GPU architectures. Simulations of particulate flows
have always been a special focus of the group’s effort throughout the continuous develop-
ment of waLBerla. The integration of the rigid body physics engines PE and MESA-PD
allows us to model multi-physics scenarios with a granular phase.

5.2.2 Current code status and steps towards exascale readiness

waLBerla has demonstrated excellent strong scaling on a wide variety of supercomputers
representing different architectures. The automatic code generation is a key component to
ensure portability across most existing architectures, including GPU based systems. For
example, scalable simulations with adaptive mesh refinement and load balancing have
been demonstrated already on up to 2M CPU threads (on Juqueen) when processing
meshes with a trillion unknowns. This represents some of the largest CFD computations
that have been feasible on this class of pre-exascale machines. On the large GPU cluster
PizDaint, waLBerla has exhibited almost perfect scalability for a two-phase benchmark
case with up to 2048 GPUs. A careful roofline analysis for this case has shown that
waLBerla could sustain a high fraction of aggregate peak memory bandwidth. This study
demonstrates that waLBerla operates probably close to the architecture-specific optimum.
As many top EU HPC machines are heterogeneous CPU-GPU clusters, the steps towards
exascale readiness will mainly involve porting all simulation parts to GPU and supporting
GPUs from different vendors, namely AMD, as they are used in LUMI. Furthermore, more
advanced fault-tolerance and checkpointing mechanisms will be incorporated.

5.2.3 Synergies within CEEC

The following synergies will be leveraged to achieve the common goals of CEEC with
greater efficiency, which will benefit waLBerla and LHC4: Through the collaborative ef-
forts in WP3 — ’exascale algorithms’, the performance of waLBerla could be improved
using a mixed-precision Lattice Boltzmann approach. This reduces the required memory

D1.1 – CEEC exascale lighthouse cases and their needs 21

traffic which is the bottleneck of the fluid simulation using the Lattice Boltzmann method.
The performance engineering, continuous integration, testing, and performance tracking
strategies and methods developed within WP2 – ‘software and performance engineering’
will be applied. This includes, for example, a high-performance implementation of rele-
vant compute kernels for different architectures. Here, intensive exchange and transfer of
knowledge between the developers of waLBerla and FLEXI will be conceivable.

5.3 Computational requirements for the LHC
The domain of our LHC in its final form will be a cuboid of size 3 m × 0.5 m × 1 m. This
domain will be discretized using cubic fluid cells of size 5×10−4 m. This results in 6000×
1000×2000 = 1.2×1010 cells. This fluid domain will be filled with 1×107 spherical particles
for the particle-resolved simulation. Since there are three orders of magnitude between
the number of particles and the number of fluid cells, the computational requirements are
dominated by the fluid cells.
The computational requirements can be estimated as follows. We store in the order of
40-50 double-precision values per fluid cell and we typically have two grids. Therefore, we
arrive at a main memory requirement of 5-10 TB for the whole simulation. The known
bottleneck of this simulation will be the memory bandwidth. Here, we aim for hardware
with high bandwidth, e.g., A100 GPUs. The final number of the required GPUs is still to
be evaluated. Our target HPC architectures are clusters with NVIDIA and AMD GPUs,
namely Leonardo and LUMI.
Regarding the required storage for the simulation, the I/O needs are highly dependent
on the VTK output frequency and resolution. This will be adjusted depending on the
resources available. All the estimated numbers are summarized in Table 4.

Lattice cells Particles Main memory
12B 10M 5-10 TB

Table 4: Estimation of the requirements for LHC4.

6 LHC5: Simulation of Atmospheric Boundary Layer flows
6.1 Introduction to the lighthouse case
Atmospheric boundary layer (ABL) flows, in addition to their role in vertical exchanges of
moisture and aerosols in the atmosphere, also affect transportation, power generation by
renewable sources (wind and solar), pollutant dispersion, and others. Efficient simulation
of ABL flows is important for the study of wind farms, urban canyons, and basic weather
modeling. Density stratification from surface heating and cooling directly affects these
flows which are highly turbulent, with Coriolis effects caused by the earth’s rotation
complicating them even further. Regional weather patterns and terrain morphology add
additional complexity to ABL flows.
In LHC5, the state-of-the-art LES of the stable and convective ABL is extended to ex-
amine the quality of LES solutions, and in particular their dependence on the mesh,

D1.1 – CEEC exascale lighthouse cases and their needs 22

Figure 5: Isocontours of streamwise velocity in the GABLS benchmark from LES with
Nek5000.

subgrid-scale (SGS) parameters, numerical discretization, and surface boundary condi-
tions. For this, the high-order Nek5000 and NekRS codes will be used, including wall
models based on the Monin-Obukhov [7] similarity theory for rough walls which are ap-
propriate for variational formulation approaches such as the high-order SEM. We continue
our collaboration with ANL and NREL scientists toward the cross-verification and valida-
tion of the LES results and corresponding wall models by performing a number of scaling
studies to compare the performance of several ABL codes on CPU and GPU platforms. In
the stably stratified ABL, e.g., the nocturnal ABL over land, the largest turbulent scales
are often much smaller than those seen during neutral or unstable stratification such that
the sensitivity to the SGS model in the LES is increased. Here, we follow the work of [9],
where the SGS stress tensors are expressed in terms of a non-isotropic, an isotropic and a
fluctuating part. Although continued improvement of SGS turbulence models is necessary,
increasing simulation resolution is one route to reduce the dependence on SGS turbulence
models. A well-documented stably stratified ABL benchmark problem that can be used
for these purposes, namely, for model and code inter-comparison, is the Global Energy
and Water Cycle Experiment (GEWEX) ABL Study (GABLS) benchmark, illustrated in
Fig. 5, which is of direct relevance to wind-farm modeling and weather forecasting. For
the convective ABL, numerical convergence is examined by means of a sheared daytime
convective ABL reported in Sullivan and Patton [10] by tracking low- and high-order
statistics and bulk entrainment.
Specialized kernels based on OCCA6 will be developed for the CPU/GPU code NekRS,
taking the memory hierarchy into account and minimizing memory transfer between host
and device. Preliminary simulations [6] demonstrated very good agreement with results
by other established ABL codes, but more importantly, excellent scalability on 4800 GPUs
on Summit.

6.2 Linked code and exascale computing
6.2.1 Introduction of the code

Nek5000 and NekRS are highly-efficient and scalable open source incompressible and low
Mach flow solvers7 employing the SEM, a high-order weighted residual technique for spa-

6https://libocca.org
7https://nek5000.mcs.anl.gov

D1.1 – CEEC exascale lighthouse cases and their needs 23

tial discretization that can accurately represent complex geometries. Globally, the SEM
is based on a decomposition of the domain into E smaller subdomains (elements), which
are assumed to be curvilinear hexahedra (bricks) that conform to the domain boundaries.
Locally, functions within each element are expanded as Nth order polynomials cast in
tensor-product fashion, which allow differential operators on N3 grid points per element
to be evaluated with only O(N4) work and O(N3) storage. The principal advantage of the
SEM is that convergence is exponential in N , yielding minimal numerical dispersion and
dissipation. Significantly fewer grid points per wavelength are required in order to accu-
rately propagate a signal (or turbulent structure) over extended times in high Reynolds
number simulations.
The solution procedure for solving the governing equations is based on a high-order split-
ting scheme, where the hydrodynamic equations are advanced with a backward differ-
ence/ characteristic-based (BDF/CHAR), time-stepping algorithm developed for the ALE
method [8]. The BDF/CHAR scheme allows the simulation to overcome CFL restrictions
imposed by standard schemes such as backward difference/extrapolation (BDF/EXT).
Nek5000 is equipped with multilevel solvers that scale to millions of cores. The multilevel
solvers require global coarse-grid solves that are based on fast direct solvers developed in
Tufo and Fischer [11]. The pressure substep requires a Poisson solve at each step, which
is affected through a multigrid-preconditioned GMRES iteration coupled with temporal
projection to find an optimal initial guess. Particularly important components of Nek5000
are its scalable coarse-grid solvers that are central to parallel multigrid. Counts of 15 GM-
RES iterations per timestep for billion-gridpoint problems are typical with the current
pressure solver.
Recent activity involves enhancement of Nek5000’s support for combustion and reactive
flows, multiphase (liquid/gas and fluid-particle-particle interactions), multimodel physics
(e.g., drift-diffusion, combustion or RANS), and moving domains (e.g., rotating machin-
ery, internal combustion engine or fluid-structure interaction in reactors). In the past
several years, Nek5000 has been developed further to include nonconforming overlapping
Schwarz discretizations, including multirate time-stepping in overlapping grids, advanced
meshing and mesh optimization, and a high-order characteristic-based ALE approach for
moving-domains.

6.2.2 Current code status and steps towards exascale readiness

Nek5000 has a history of scaling extremely well on a variety of architectures, including the
IBM BG/P and BG/Q at ALCF and the Cray systems at the Swiss National Supercom-
puting Center. It also scales well on ALCF’s Theta machine. Scaling studies on Theta
during the ESP Workshop in 2016 showed 7:2x per node speedup in comparison with
BG/Q. The low-Mach solver in Nek5000 demonstrated very good strong scaling across
Theta’s nodes, which exhibited 75% parallel efficiency for as few as 9000 points per MPI
rank.
The GPU-oriented NekRS, developed with support from DOE’s Exascale Computing
Project as part of the Center for Efficient Exascale Discretizations, is built on the OCCA-
based libParanumal library developed by Tim Warburton’s group at Virginia Tech. The
highly tuned kernels in this library run at the memory-bandwidth limit of the roofline
model (meaning that they are running at the peak theoretical speed) and sustain in excess

D1.1 – CEEC exascale lighthouse cases and their needs 24

of 2 TFLOPS (FP64) on the Nvidia V100 for polynomial degrees of N = 14 − 16. As
described in Fischer et al. [2], the leading indicator of parallel scalability for a given
algorithm-architecture coupling is nDoF/P , rather than the number of processing units,
P . Based on this, scalability studies for Nek5000, NekRS (CPU), and NekRS (GPU)
on ORNL’s Summit demonstrated excellent strong scaling for NekRS on all of Summit,
pointing to an nDoF/P ∼ 2.5M as the 80% efficiency level for the V100s. Currently
the bottlenecks are strong scaling of gather/scatter type kernels, strong scaling of coarse
polynomials and AMG multi-grid levels, data layout for low polynomial degrees, the
data layout on the CPU backend and the performance imbalance between communication
performance and compute power. These bottlenecks will be addressed within the CEEC
project to further increase the performance of the codes.

6.2.3 Synergies within CEEC

The following synergies will be leveraged to achieve the common goals of the CEEC
with greater efficiency, which will benefit the considered codes NekRS/Nek5000 and
LHC5: The joint efforts in WP3 — ’exascale algorithms’ consider possibilities in which
NekRS/Nek5000 can benefit from, e.g., mixed-precision algorithms combined with the
underlying Krylov-type solvers and in the preconditioners. Moreover, the codes Neko,
Nek5000, and NekRS have the same roots and therefore, share many similarities that can
be leveraged for further developments, including the efforts in WP3. The GPU-oriented
NekRS, which is written in C++/OCCA, is the refactored version of Nek5000 which is
written in F77/C. NekRS provides access to the standard Nek5000 interface and features
(e.g., deformed geometry through an ALE formulation as well as overlapping domains),
which allows users to leverage existing application-specific source code and data files on
GPU-based platforms. In addition, the two codes share the same output file format and
the results can be used interchangeably by both codes.

6.3 Computational requirements for the LHC
The two simulation cases within LHC5 are first the base case (GABLS) and second, the
canonical daytime convective ABL. At this stage within the project, we expect the domain
size of the GABLS case to be (Lx, Ly, Lz) = (400 m, 400 m, 400 m) and for the daytime
convective ABL to be (Lx, Ly, Lz) = (5120 m, 5120 m, 2048 m).
For each case, four different mesh resolutions are investigated, ranging from 323 to 2563

high-order spectral elements. Considering six variables per grid point (three velocity
components, pressure, temperature, and turbulent kinetic energy (TKE)) results in 0.1B
up to 52B DoFs. The associated resolutions and mesh data are summarized in Tab. 5.
These simulation cases will be investigated both with the CPU-based Nek5000 and the
GPU-based NekRS. For the investigations with Nek5000, only the first three mesh reso-
lutions are considered. In the case of the canonical daytime convective ABL, similar reso-
lutions will be investigated. For those simulations, the required resources using Nek5000
and NekRS are summarized in Tab. 5. Here, an estimation of the required CPUs/G-
PUs and an estimated memory consumption based on the requirements of Nek5000 are
provided.
Our strategy regarding I/O is the following: First, all data resides on the device, with

D1.1 – CEEC exascale lighthouse cases and their needs 25

Elements Grid points DoFs CPUs GPUs Required memory
323 2563 0.1B ∼ 1000 8 40 GB
643 5123 0.8B ∼ 8000 64 320 GB
1283 10243 6.4B ∼ 32000 512 3 TB
2563 20483 51.5B 4096 20 TB

Table 5: Estimation of the required number of elements, grid points and DoFs for LHC5
as well as an estimation of the required hardware resources for Ne5000 (CPUs) and NekRS
(GPUs).

Grid points Output size (single field) Output size (whole simulation)
2563 0.57 GB 15 GB
5123 4.6 GB 120 GB
10243 36.7 GB 954 GB
20483 293.5 GB 7630 GB

Table 6: File size of the solution for a single field and the whole simulation, depending
on the mesh size.

a copy back to the host only when needed. We want to perform check-pointing every
few thousand time steps, e.g., approximately every hour, which contains only restart
information, i.e., the whole system state is not stored. For post-processing, the system
will be stored every 20 minutes of physical time. At a simulation duration of the GABLS
case of 9 hours of physical time, this results in about 26 field outputs. Each output
file contains the field of the variables of interest (three velocity components, pressure,
temperature, and TKE). The approximated file sizes depend on the resolution and are
given in Tab. 6 for a single field and the expected 26 field outputs. Supplementary data
such as mean and fluctuation profiles, surface data, point probes and integral values in
time will be calculated during the simulation, but their size is negligible compared to the
size of the field files.
For the actual output, Nek5000 and NekRS share the same I/O parallelization strategy.
In the case of NekRS, where all data resides on the device, the data is copied back to
the host only when memory-intensive data transfer has to be avoided. Application-level
checkpointing is available in Nek5000/NekRS based on tuned MPI-I/O collective, reduced-
blocking, and thread-based approaches, achieving a write performance of 70 GB/s at
best. Nek5000/NekRS provide balanced I/O latency among all processors and reduce the
overhead or even completely hides the I/O latency by using dedicated I/O communicators
in the optimal case.
In terms of required memory bandwidth, LHC5 will gain significant performance as mem-
ory bandwidth increases as the OCCA-based kernels operate close to the bandwidth-
limited roofline in the case of NekRS.

D1.1 – CEEC exascale lighthouse cases and their needs 26

Figure 6: Resolved turbulent structures on the hull of the Japan Bulk Carrier. Repro-
duced from [5].

7 LHC6: Merchant ship hull
7.1 Introduction to the lighthouse case
A rapid shift towards more environment-friendly propulsion systems is a high priority for
all branches of the transport sector. This includes the marine shipping industry, which
currently accounts for approximately 90% of all freight transport. A critical component
of evaluating the performance of a ship hull design is the accurate prediction of the
associated flow structures forming near the hull’s surface and in its wake. This concerns
both the prediction of the friction drag, but also the performance of the propulsion system,
particularly the propeller and potential Energy Saving Devices (ESDs). Both are located
in the turbulent wake formed behind the hull of the vessel and are subject to associated
unsteady loads.
Low-fidelity turbulence modeling approaches are not capable of properly resolving the
large vortical structures forming on the hull and directly affecting the flow in the wake.
Moreover, time-averaged treatment of turbulence is, by definition, not capable of providing
certain key characteristics, such as the peak load on the propeller. Here, we will use scale-
resolving turbulence modeling methods (LES and WMLES) to compute the flow around
the Japan Bulk Carrier (JBC), see Fig. 6, which was studied extensively at the Workshop
on CFD in Ship Hydrodynamics in Tokyo, 2015. As a baseline, we will consider the hull
in double-body condition, i.e., without the effects of the free surface, and absence of ESDs
and the propeller. For this configuration, a wall-resolved LES is performed, which will be
used to analyze the flow physics and provide reference data for lower-fidelity runs using
WMLES. For the latter we will use both traditional RANS-based wall models and those
based on machine learning, leveraging the developments in WP4. Neko will be used to
perform all the simulations, leveraging its high-order accuracy, computational efficiency,
and portability to different computing hardware.
The scientific relevance of the proposed simulations can be demonstrated from several
angles. From a physical standpoint, they will provide data of unprecedented accuracy
for the flow around the hull. This will allow examining the flow structures in detail and
provide extremely valuable reference data for driving the development of lower-fidelity
models. Since the latter will remain to be the workhorse of industrial simulations in the
foreseeable future, the potential impact on both the scientific and engineering community
is high. The case will also provide an excellent testing ground for methodological devel-

D1.1 – CEEC exascale lighthouse cases and their needs 27

opments. Particularly, wall model development, immersed boundary techniques, adaptive
mesh refinement, and uncertainty quantification.

7.2 Linked code and exascale computing
7.2.1 Introduction of the code

A detailed introduction to Neko is given in Section 4.2.1.

7.2.2 Current code status and steps towards exascale readiness

The status of Neko is described in Section 4.2.2. In summary, Neko has been tested on a
full pre-exascale GPU machine (LUMI-G) and demonstrated excellent scaling. Therefore,
Neko is well prepared for the upcoming exascale systems and LHC6.

7.2.3 Synergies within CEEC

The following synergies will be leveraged to achieve the common goals of CEEC with
greater efficiency, which will benefit Neko and LHC6: Through the collaborative efforts
in WP3 – ’exascale algorithms’, we could benefit from mixed-precision in precondition-
ers. This concept will also be propagated to the underlying Krylov-type solvers. Since
the codes Neko, Nek5000, and NekRS have the same roots and therefore, share many
similarities, the efforts in WP3 could potentially be shared by these codes. Moreover,
these similarities can be leveraged for further developments, including strategies for per-
formance measurements and efficient portability to different computing hardware. We
expect the most productive collaboration among project partners to take place within
WP4 — ‘exascale techniques’, i.e., in the development of wall models and common ap-
proaches for efficiently conducting machine-learning-enabled simulations at scale, includ-
ing fully automatic uncertainty quantification simulations on HPC systems. For example,
the AI-driven part could potentially be shared by Neko, Alya and FLEXI, while the latter
could be shared by Neko and FLEXI.

7.3 Computational requirements for the LHC
The resolution requirements for the turbulent boundary layers formed on the hull are
driven by the sizes of turbulent structures found therein. We focus here on the wall-
resolved simulations since their size will be orders of magnitude larger than the wall-
modelled ones. The mesh sizes are based on the structures in the inner layer, and the
requirements are well understood. Based on the literature, for a moderately wall-resolved
LES of the JBC, the number of DoFs is in the order of tens of billions. Depending on
available resources, we may want to aim higher than that. To estimate the computational
requirements, we consider 15 elements per CPU core as the minimum, after which parallel
efficiency becomes too low. For 1010 unknowns and polynomial order 7, the number of
elements is ≈ 2 · 107. Dividing by 15 gives the estimate of 1.3 · 106 cores. To estimate
the number of GPUs, we relate to existing data for Neko that shows that a single GPU
roughly corresponds to a single CPU node with 128 cores (on e.g. LUMI). This gives
≈ 104 GPUs. Note that Neko has been shown to scale with nearly ideal parallel efficiency
on up to 16 386 GPUs on LUMI.

D1.1 – CEEC exascale lighthouse cases and their needs 28

DoFs CPUs GPUs Output size
∼ 10B ∼ 106 ∼ 104 ≤ 100 TB

Table 7: Estimation of the required hardware resources for Neko and the disc space used
for the whole simulation.

Memory size is not expected to be an issue, as the memory of each compute node is
very high on modern machines. For I/O, the main issue is the disk space, since each 3D
data dump can be in the order of TB in size. Thus, hundreds of TB may be required
for a comfortable simulation environment. On the other hand, the number of files per
simulation is expected to be low enough to not pose any specific requirements worth
mentioning. A summary of the required resources is provided in Table 7.

8 Summary
This deliverable describes the requirements of the six lighthouse cases (LHCs) being con-
sidered by the Center of Excellence in Exascale CFD (CEEC). Using these six lighthouse
cases, the CEEC project aims to develop CFD frameworks that efficiently exploit future
exascale systems.
After introducing the LHCs and the CFD codes used to compute them, the computa-
tional requirements for the LHCs were given. This includes preliminary estimates for
each LHC of the target problem size in degrees of freedom, the required memory, the
target HPC architecture including the required number of CPUs and/or GPUs, the I/O
requirements, and the exascale maturity status. Synergies between the codes involved
and the developments in the technical work packages were also discussed.
The next steps within the work package one will address common benchmarking and
concepts for self- and cross-validation for the LHCs.

D1.1 – CEEC exascale lighthouse cases and their needs 29

Bibliography
[1] M Blind, P Kopper, D Kempf, M Kurz, A Schwarz, A Beck, and CD Munz. Per-

formance improvements for large scale simulations using the discontinuous galerkin
framework flexi. High Performance Computing in Science and Engineering, 22, 2022.

[2] Paul Fischer, Misun Min, Thilina Rathnayake, Som Dutta, Tzanio Kolev, Veselin Do-
brev, Jean-Sylvain Camier, Martin Kronbichler, Tim Warburton, Kasia Świrydowicz,
et al. Scalability of high-performance pde solvers. The International Journal of High
Performance Computing Applications, 34(5):562–586, 2020.

[3] Konrad A Goc, Oriol Lehmkuhl, George Ilhwan Park, Sanjeeb T Bose, and Parviz
Moin. Large eddy simulation of aircraft at affordable cost: a milestone in computa-
tional fluid dynamics. Flow, 1:E14, 2021.

[4] Nico Krais, Andrea Beck, Thomas Bolemann, Hannes Frank, David Flad, Gregor
Gassner, Florian Hindenlang, Malte Hoffmann, Thomas Kuhn, Matthias Sonntag,
and Claus Dieter Munz. FLEXI: A high order discontinuous Galerkin framework for
hyperbolic–parabolic conservation laws. Computers and Mathematics with Applica-
tions, 81:186–219, 2021.

[5] M. Liefvendahl and M. Johansson. Wall-modeled les for ship hydrodynamics in model
scale. Journal of Ship Research, 65:41–54, 2021.

[6] M. Min, M. Brazell, A. Tomboulides, M. Churchfield, P. Fischer, and M. Sprague.
Towards exascale for wind energy simulations. submitted The International Confer-
ence for High Performance Computing, Networking, Storage, and Analysis (SC22),
2022.

[7] A. S. Monin and A.M. Obukhov. Basic laws of turbulent mixing in the surface layer
of the atmosphere. Tr. Akad. Nauk. SSSR Geophiz. Inst., 24(151):163–187, 1954.

[8] Saumil Patel, Paul Fischer, Misun Min, and Ananias Tomboulides. A Characteristic-
Based Spectral Element Method for Moving-Domain Problems. Journal of Scientific
Computing, 79(1):564–592, 2019.

[9] P. Sullivan, J. McWilliams, and C. Moeng. A subgrid-scale model for large-eddy
simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71:247–276,
1994.

[10] Peter P Sullivan and Edward G Patton. The effect of mesh resolution on convective
boundary layer statistics and structures generated by large-eddy simulation. Journal
of the Atmospheric Sciences, 68(10):2395–2415, 2011.

[11] H.M. Tufo and P.F. Fischer. Fast parallel direct solvers for coarse grid problems. J.
Parallel Distributed Comput., 61:151–177, 2001.

