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1 Executive Summary
In this document, the EuroHPC JU Center of Excellence in Exascale CFD (CEEC) aims
to provide users/ application developers with a brief overview of possibilities, limitations,
and best practices for measuring energy consumption on European HPC systems1. CEEC
is working to reduce the energy footprint of its consortium codes on such systems by ap-
plying novel algorithmic solutions. However, in initially exploring options for collecting
energy measurements on both local and European HPC systems, we found no single ap-
proach for energy measurements and the process of taking these measurements compara-
tively more difficult than measuring time-to-solution with e.g. basic start-end time calls.
This difficulty often stems from a requirement for privileged access to specific hardware
counters. Mitigation strategies for this restriction exist and enable users to collect the
energy metric, but they are not widely known. We describe these strategies in Section 3
followed by concrete examples from CEEC on how to harvest the energy measurements
described in Section 5. We believe this will help to increase awareness and thus utilization
of energy consumption measurements in the application development process.
Furthermore, we describe several other important issues: 1) granularity and overhead
of measurements since energy = power × time and 2) what is included (there multiple
factors) in the number delivered by a tool/ framework/ workload manager. We strive to
be concise and precise aiming to provide a glimpse of energy measurement methods as
well as many references for further exploration. Our takeaway messages are

1. The community/ data centers need to facilitate energy measurements on the Euro-
pean HPC systems and teach the community how to conduct such measurements.

2. The community/ data centers need to provide transparent and easy-to-use guides
on each (at least large) European HPC system, outlining the ways to collect energy
measurements2.

In CEEC, we are taking the first steps towards spreading these messages, aiming to create
a larger consortium including experts and data centers, who can contribute to and update
this document. Explore and stay tuned!

1This is where we have access, but approaches and techniques can virtually be applied on any system.
2We would like to point out that CASTIEL2 – Coordination and Support for National Competence

Centers and Centers of Excellence on a European Level Phase 2 – aims at providing more specific
information per each EuroHPC JU HPC systems soon.
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2 Introduction
The energy consumption constraint for using thousands of computers connected together
(called supercomputing or large-scale computing) [14, 42, 33] encourages scientists to
revise the architecture and design of hardware, frequently used linear algebra algorithms,
and now applications. The main idea is to ensure the energy-efficiency (aka sustainability)
of computational expenses while applying the ‘lagom’ principle, which is the Swedish ethos
of balance or ‘just enough’, especially when it comes to working or storage precision in
scientific computations. Similarly, ETP4HPC’s Strategic Research Agenda [33] introduces
the term energy-to-solution and connects it to the positive outcome of the mixed-precision
strategies applied to solvers. However, the question of how to harvest energy-to-solution
and make it a part of standard high performance computing (HPC) metrics alongside
performance, scalability, and efficiency of resource utilization remains largely unanswered.
Therefore, this document aims to bridge this gap and provide the wider community a
glimpse into energy consumption best practices and (user) experience. We intend to
provide a brief but vital study to equip users in the European HPC landscapes, and
hopefully others as well, with a sufficient understanding to start measuring energy. From
the CEEC experience, we observe that the trend of energy-efficient computing has reached
applications that are rather slow to adopt it up due to their long-standing development
(often over decades), and also their complex and sophisticated code with thousands if
not millions of lines. Thus, we believe that the time for including energy-to-solution in
standard HPC metrics and facilitating its harvesting is now.
The remainder of this document is organized as follows: Section 3 provides an overview
of possibilities for measuring energy consumption and its classification. This includes
necessary information regarding the hardware measurement methods present in differ-
ent architectures and both tools and frameworks built around these counters. Section 4
presents the metrics to enable and facilitate the comparison of energy efficiency on differ-
ent systems. Section 5 shows our experience with energy measurement methods on the
European systems with examples from CEEC. Finally, Section 6 reflects upon our expe-
rience and shares a few tips for a quickly starting with measuring energy consumption.

3 How To Measure Energy Consumption?
In high performance computing, we are accustomed to various optimisation techniques
that help us to get the most out of hardware to boost algorithms’ performance. Thus,
HPC can be viewed as an optimisation field of fitting algorithms on hardware and mak-
ing the best usage of that hardware with a single target in mind – performance. Unlike
measuring performance though, measuring energy is not straightforward, and a several
tools exist. Moreover, measuring energy on the EuroHPC JU machines can be a chal-
lenge since there is no single tool or method that supports all types of systems. Thus,
optimization in terms of energy consumption may be contre intuitive and contrary to
currently established optimization objectives: for some programs, performance correlates
with energy consumption; for others, computing a result slower or using lower precision
may lead to potentially large energy savings. In this document, we collect best practices
and existing tools, as well as share our own experience with reliably measuring energy on
different platforms. Figure 1 provides a bird eye view of the tools and frameworks that
are going to be examined, and it presents the spectrum from physical methods to software
techniques.
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Figure 1: Hierarchical relation between energy measurement methods.

3.1 Hardware Counters
This section provides a brief introduction to the energy/ power measurement counters
present in various architectures as summarized in Table 1. As mentioned above, this
document aims to provide essential information on measuring energy efficiency of appli-
cations over their run-time. Therefore, we believe that the developers who seek to have a
fine-grained profile of their application, such as profiling the consumption of DRAM, will
find the provided overview and the references useful.

3.1.1 RAPL

Figure 2: RAPL Power
Domains.

Running Average Power Limit (RAPL) [29] is a set of tools
that uses Model Specific Registers (MSRs), which are spe-
cific to each processor model, to create an interface collect-
ing different power domains such as core, package, DRAM,
and system, as depicted in Figure 2 . Therefore, they can
be programmed through these registers in order to enforce
power consumption constraints to stay within a thermal
budget, achieve specific battery life goals, or control power-
performance balances.
Each RAPL domain supports MSR interfaces for Watt-based
power limiting, offering status information for energy con-
sumption in model specific energy units, generally micro
Joules, and insights into performance effects due to power
limits.
Intel RAPL operates on the socket level and provides hi-
erarchical control over different power domains, and it can
also function as a power measurement tool, as suggested by
Hackenberg et al.[20], transitioning from modeling to actual
measurements.
Schone, Ilsche et al. [43] in their study mention that with the Zen architecture, AMD
replaced Application Power Management (APM) with RAPL. The way it’s done seems
similar to what Intel does, but AMD uses different MSRs. Unlike Intel, AMD only
mentions registers for checking package and core domain power usage. However, AMD

5



provides per-core spatial resolution, while Intel offers per-package for its core domain
(pp0). Additionaly, Intel changed from a model-based system to a measurement-based
one with the Haswell architecture, but AMD still uses a model-based approach [36].

3.1.2 NVIDIA GPUs

When discussing HPC systems, it is essential to consider their inherent heterogeneity.
As outlined in the SCALABLE Deliverable - D2.3 [12], one of the limitations we face
is the accuracy of hybrid measurements. There is no common interface between GPUs
and CPUs, except when the GPU is integrated (such as with RAPL). Consequently, we
need to couple measurements from two different sources. For NVIDIA GPUs, energy
consumption information can be obtained through the NVML API [39] using device
queries. According to the API documentation, energy consumption data is provided since
the last driver reload and includes the associated circuitry (e.g., memory). The accuracy
and sampling intervals of these measurements depend on the specific architecture. For
Grace SoCs, both CPU and GPU power measurements are available.

3.1.3 IPMI

The Intelligent Platform Management Interface (IPMI) [23] is a collection of interfaces to
manage and monitor computer systems independent of the host system with the help of
Baseboard Management Controllers (BMCs). It provides access to node power consump-
tion monitoring. Various open-source software solutions exist for in-band and out-of-band
IPMI sensors data collection [17] [27]. Hackenberg et al. [18] showed that power data at a
low sampling rate is accurate although energy consumption might not be as precise. How-
ever, the issue of low sampling rates is particularly pertinent due to IPMI’s recognized
high operations overhead.

3.1.4 PM Counters

On Cray Systems, like LUMI and Dardel at KTH, power monitoring is available both
for pure CPU systems and hybrid CPU-GPU systems [34]. Counters that show instan-
taneous power draw and cumulative energy consumption in Joules on node level are
exposed to the non-privileged users through sysfs with the help of cray-pat in directory
/sys/cray/pm counters on compute nodes. Since the counters update atomically every
100ms [21], it is important to match the energy consumption data with the correspond-
ing measurement to ensure that a consistent set of values are obtained. Therefore, there
is a second counter called ‘freshness’ incorporated in the measurements. This counter
should be accessed both before and after obtaining energy measurements to guarantee
accuracy. These measurements can be accessed also through extended prototypes of the
Score-P performance measurement infrastructure and Vampir application performance
monitoring visualiser.

3.1.5 Overview

Table 1 summarizes the variety of the counters presented in this section that are avail-
able on European HPC systems. We emphasize that considering energy-to-solution as
a performance metric is still in development and therefore lacks a unified measurement
approach.
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Each measurement approach summarized in Table 1 comes with a unique advantage that
is taken into account while designing the tools presented in Section 3.2. In this section, we
presented RAPL for Intel and AMD processors, which allows for monitoring and limiting
power across various domains like cores, socket and DRAM. It provides hierarchical control
and actual measurements, additionally AMD’s version offers per-core monitoring. For
NVIDIA GPUs, the NVML API provides energy consumption data, although the accuracy
depends on the specific GPU architecture. We also mentioned IPMI for monitoring power
usage independently of the host system, though it has limitations due to a low sampling
rates. Finally, PM counters on Cray systems allow monitoring of both CPU and hybrid
CPU-GPU systems, with mechanisms in place to ensure accurate data collection.

Table 1: Summarizing Properties of Hardware Counters.

Type Domains Granularity Measurement Type Metric Vendor Specific Overhead1

RAPL

Socket(PP0)
All cores
DRAM
System

Integ. GPU
(AMD) Per Core

1 ms Counter mili-Joules ✓ Low

NVML Socket -2 Counter mili-Joules ✓ -
IPMI Node -3 BMC Watt ✗ High

PM COUNTERS
Node

Network Card
GPU

100 ms Counter Joules ✓ Medium

HDEEM
Blade
Node

DRAM
1 ms FPGA

BMC Watt ✗ Low

1 Short measurement intervals.
2 Architecture dependant.
3 BMC sensor dependant.

3.2 Tools
This section presents high-level measurement tools suitable for application wide energy
and power analysis, leveraging the hardware counters previously described. Each of these
tools coupled with the hardware counters covers different research objectives such as
spatial or temporal granularity. Figure 3 represents how the mentioned hardware relates
to the physical domain.

3.2.1 Perf

Perf or Perf Tools [10] is an integrated performance analysis tool within the Linux kernel
that offers support for a range of counters, including hardware counters for energy. The
perf event open system call is employed by Perf to access and manage these perfor-
mance counters effectively. Some of the tools presented here are developed on top of Perf
Tools, but they provide simpler solutions because development with Perf Tools requires
some level of attention and more information regarding the measurements. For instance,
developers working with perf event open should pay attention to the detailed implemen-
tation of the counters, such as the wrap around time, which requires advanced knowledge
of the architecture of the counters. Additionally, Perf reads energy consumption directly
from the hardware counters, therefore it requires users to have root privilege (pseudo-sudo
access) or to set the perf event paranoid value to 0 or lower, which raises the security
concerns.
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3.2.2 HDEEM

High Definition Energy Efficiency Monitoring (HDEEM) [19] allows high accuracy
energy/ power analyses of applications at high sampling rate with the help of inband
measurements as well as with an out of band measurement with an FPGA (Field
Programmable Gate Array) tool.

Figure 3: A generic blade to describe spatial granu-
larity of components.

On the hardware level, HDEEM
uses analog filters to overcome alias-
ing issues and noise. Addition-
ally, HDEEM combines an FPGA
and the existing BMC hardware in-
stead of an autonomous measure-
ment board. Its API also sup-
ports IPMI and SLURM for gath-
ering data at a low temporal gran-
ularity, allowing administrators to
use their existing tools for gather-
ing information. Its scalable mea-
surement readout interface is based
on energy values, which allows us to
read values with different temporal
granularity without losing informa-
tion from missed samples. For fine-
grained measurements, it provides
the samples via the PCIe bus, which
is faster then going over 10/100
MBit Ethernet or USB.

3.2.3 PAPI

Performance API (PAPI) library [35] is a cross platform library supporting external
power meters as well as the internal ones. Its main advantage is the ability to measure a
diverse set of hardware with a common interface [46]. Therefore, there exists multiple
tools built on top of PAPI such as TAU [40], HPCToolkit [22], Vampir [15], etc. It
is possible to read power and energy metrics via Intel RAPL for SandyBridge and its
successors, as well as the NVML for NVIDIA GPUs.

3.2.4 LIKWID

LIKWID stands for ‘Like I Knew What I’m Doing’ [5] and is a Linux command line
performance tool suite that offers users control over task affinity and the ability to plot
live performance metric graphs along with other features. RAPL readings are accessible
through likwid-powermeter for comprehensive measurements and likwid-perfctr for
hardware performance event counting which can be used for the energy counters exposed
as events on other architectures such as ARM, NVIDIA and more. Additionally, users
can couple powermeter metrics with core temperature metrics for analysis.
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3.3 Frameworks and Runtime Systems
This section aims to provide an overview of available ready-to-use runtime systems and
APIs in order to monitor and optimize energy consumption with two different methods.
Figure 1 shows how these systems relate to the physical measurement devices and tools
previously described.

3.3.1 EAR

Energy Aware Runtime (EAR) [3] is a collection of tools offering system power consump-
tion and job energy accounting as well as runtime energy optimization, cluster power
management, and both cluster and node power capping without any application modifi-
cation. Note that EAR requires to be installed with root privileges on the Linux kernel.
From the user perspective, it aims to be machine agnostic. Additionally, it provides
extensive reporting mechanisms. In order to provide energy optimizations, EAR takes
advantage of its runtime library [25] , which selects an optimal CPU frequency based on
the energy policy and application characteristics.

3.3.2 MERIC

The MERIC library [45] evaluates application’s behavior in terms of resource consump-
tion, and controls hardware and runtime parameters such as the Dynamic Voltage and
Frequency Scaling (DVFS), Uncore Frequency Scaling (UFS), and number of OpenMP
threads through external libraries. Applications can be instrumented using the MERIC
manual instrumentation to analyze each part of the code separately. The energy measure-
ments are provided by the HDEEM system, or by the RAPL counters. MERIC, coupled
with another tool RADAR, generates a LATEX report and a MERIC configuration file that
outputs the best settings for the evaluated parameters.

3.3.3 LLview

LLview [37] consists of software components designed to monitor clusters managed by a
resource manager and scheduler system. Its Job Reporting module offers detailed insights
into every job currently running on the system by connecting to various sources within
the system to gather and display data through a web portal. For example, the resource
manager provides information about the jobs, while additional daemons collect extra data
from compute nodes with minimal overhead, as metrics are updated every few minutes.
Some of the metrics tracked include statistics about the GPU usage, memory usage rate,
power, and temperature. The LLview portal not only links performance metrics to spe-
cific jobs but also allows users to access tables with aggregated performance information,
timeline graphs detailing key metrics over the course of a job, and comprehensive reports
in both interactive and PDF formats. Additionally, this efficient interface updates perfor-
mance metrics every minute to provide real-time data, ensuring minimal system overhead.
For instance, the values are obtained for each GPU from NVIDIA’s Data Centre GPU
Manager dcgm every minute.

3.4 Workload Manager: A SLURM Example
SLURM [1] stands out especially with its ease of use for application wide measurements
and its availability. It provides a common interface for different socket level infrastructure
options, such as IPMI, RAPL or PM Counters and more; and, it is constantly developing.
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Like EAR, the tool does not ask for any root privileges, since it has been already installed
with them.
Users and system administrators, who want to measure energy consumption with the
help of SLURM, should remember that the plug-in responsible for energy accounting and
monitoring should be enabled in slurm.conf. This configuration file also details the
socket-level measurement approach used. For instance, we verified that on the EuroHPC
JU system LUMI, this plug-in uses the PM Counters provided by HPE Cray Systems with
the help of a BMC. Therefore, we know that the measurements are node level. Thus, the
isolation of processes other than the targeted application should be addressed, taking into
account the inherent restriction of the placement of the counters as shown in Figure 3.
We have to make sure that no other jobs are intervening on node level measurements,
with the least OS noise possible.
There is also the External Sensors Plugin that collects energy and temperature data
generated out-of-band by an external system manager such as Nagios, or external sensors
such as wattmeters.

4 Metrics
As we discussed, there is a need to establish an energy metric and to include it in the
standard HPC set of metrics along with time-to-solution and its derivations, in order to
compare different systems and configurations. We discuss a few variants below.

4.1 FLOPs per Watt & Bytes per Watt
Green500 [44] considers FLOPS per Watt as its primary energy efficiency metric to rank
supercomputers since its introduction in 2007. The main goal is to track and improve the
energy consumed per instruction as FLOPs per Watt. This metric can also be reduced
to FLOP per Joule. In the same regard, Bytes per Watt indicates the energy efficiency
of the memory systems.

4.2 Energy Delay Product

EDwP = E ∗ T w

Energy Delay Product (EDP) [31], sometimes referred as ED2P , is a metric that takes into
account the runtime (T) and the energy (E) consumption of an application. Therefore it is
often used to evaluate trade-offs (D) between power saving techniques and performance.
A form of weighted EDP is used to prioritize or weight (w), performance over energy
savings, therefore lower is better.

4.3 Energy and Carbon Footprint
The carbon footprint of an application [41] can be explained as the carbon intensity of the
energy source per unit of energy. Therefore, one of the main ways to reduce the carbon
footprint of an application is through lowering its energy consumption. This metric is
also relatively new and needs to be estimated most of the time rather than being measured.
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4.4 Energy-normalized Performance Index (EPID)
Within the FLEXI framework [30], which is being developed in the numerical research
group at the University of Stuttgart, Performance Index (PID) is traditionally used to
measure and compare the performance between systems. It is defined as

PID = wall-time × #ranks
#RK-stages × #DOF , (1)

and describes the average time it takes a computational rank to update a single degree of
freedom (DOF) for one Runge–Kutta stage. An alternative interpretation of the PID is
as an estimate of the normalized required time-to-solution, i.e. a low PID indicates good
performance, and an increase in the PID indicates decreasing performance.
With the increasing use of accelerator-based HPC hardware architectures, a rank based
comparison of the PID between traditional CPU-based HPC systems and accelerator-
based HPC systems, where a rank is a traditional CPU rank or a single accelerator device
like a GPU, loses its significance. Due to the sheer differences in computing power per
rank, this PID can vary by orders of magnitude. For the comparison of different HPC
architectures, we have decided to consider an energy-normalized PID (EPID) in order to
take this inequality of the total energy consumption into account.
This EPID is defined as

EPID = wall–time × power
#RK-stages × #DOF = power

#ranks︸ ︷︷ ︸
Prank

× PID, (2)

and is designed to be a physical quantity with a unit of energy. It describes the energy
required to compute the time update for a single DOF on the specific computing hardware
and can be interpreted as the PID normalized by the specific power required per rank
Prank. The EPID is not yet applicable to all HPC systems, as the energy data for this
is not accessible to the user everywhere. However, computing centers are actively striv-
ing to make this data available to users, so that the EPID represents a future-oriented
performance parameter.

4.5 Energy Efficiency
The energy efficiency can be defined as the ratio of the energy consumed by parallel sim-
ulation to the energy consumed by a baseline simulation, which is run with the minimum
number of racks possible. This allows users and developers for an assessment of energy
efficiency in varying numbers of ranks. The energy efficiency can be computed as

Energy Efficiency = EnergyP

EnergyP0

, (3)

where EnergyP is the energy required for a simulation with P ranks and EnergyP0 is
the energy required for a simulation with the minimum number of ranks P0. There is a
clear indication that as parallel efficiency decreases, the simulation becomes more energy
inefficient, with the degree of inefficiency being roughly proportional to the decrease of
parallel efficiency.
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5 CEEC examples of measuring energy-to-solution
This section showcases success stories from four European HPC systems using CEEC
examples. For more details, we would like to refer to the CEEC ‘Deliverable D2.3 – In-
termediate performance and energy efficiency evaluation result’ [11]. It is worth noting
that one of CEEC’s key performance indicators (KPIs) is energy-to-solution. Table 2
lists possible methods and tools CEEC code owners use for energy measurements on dif-
ferent European HPC machines. It is important to note that the codes are still working
on harvesting energy measurements as development toward the proposed CEEC light-
house cases3 progresses. Furthermore, Appendix A outlines a range of methods and tools
available for measuring energy on the European supercomputers. Each supercomputer is
equipped with different tools and techniques to measure energy, catering to the specific
requirements and capabilities of their respective supercomputing infrastructure.

Table 2: Energy measurement of the CEEC consortium codes on various European HPC
systems using the most common methods and tools on each individual system.

Code Machine Framework Counter

FLEXI [28] HAWK Apollo 9000 HPE-HPCM 4 CMC 5

Apollo 6500 PDU 6

waLBerla [47] LUMI-G sacct pm counters
Nekbone [9] LUMI-C

Neko [26]
HPE Cray EX rocm AMD GPU

Alvis nvidia-smi NVIDIA GPU
Dardel cray-pat AMD RAPL

NekRS/ Nek5000 [32] JUWELS Booster LLview NVIDIA dcgm
4 Customized HPE - High Perfromance Cluster Management.
5 Chasis Management Controller.
6 Metered Power Distribution Units.

5.1 FLEXI on HAWK
FLEXI and its GPU-based derivative GÆLEXI [28] are high-order accurate flow solvers
based on the discontinuous Galerkin (DG) spectral element method. The local communi-
cation stencil of the DG method and the efficient parallelization allow for excellent scaling
properties.
Within the CEEC project, FLEXI has collaborated with HLRS and HPE to evaluate
the energy efficiency at HLRS on their CPU- and GPU-based systems. We has received
assistance from the application support team at HLRS to collect the energy data of the
simulations. This additional intermediate step will no longer be necessary in the future,
as HLRS is actively working on making energy consumption available to the user via the
project management tool, among others.
In this initial energy efficiency investigation, the CPU-based FLEXI solver on HAWK
was compared with the GPU-based solver GÆLEXI on HAWK-AI with regard to the

3More information about the CEEC lighthouse cases at https://ceec-coe.eu/lighthouse-cases/
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EPID as introduced in Section 4.4. For this purpose, a practical example of a rectilinear
transonic compressor cascade equipped with NASA Rotor 37 profiles was used. This
compressible case includes all relevant software functionalities, including the necessity of
shock capturing. The simulations are initialized with a precomputed converged flow state
and are advanced for a total of 8 characteristic time units t∗ = tu∞/c, where t∗ is defined
with respect to the inflow velocity u∞ and the chord length c. Table 3 shows that the
GPU accelerated system exhibits a 56% reduction in energy consumption [28].

Table 3: Performance and energy measurements using the example of a rectilinear tran-
sonic compressor cascade equipped with NASA Rotor 37 profiles, more details in [28].

Prank [W] PID [s] EPID [J] Walltime/t∗ [s] Energy/t∗ [kWh]
GPU 448 4.58 × 10−9 2.05 × 10−6 9209 147
CPU 4.94 1.02 × 10−6 5.06 × 10−6 7538 339
Savings 59.5 % 56.8 %

5.2 waLBerla on LUMI-G
The waLBerla framework [47] is a widely applicable lattice Boltzmann simulation code
from FAU, Erlangen-Nuremberg. Currently, it uses pm counters through the SLURM
energy plug-in to measure energy consumption on LUMI-G. The total energy consumed
can be retrieved after the job has finished with sacct using the --format option and the
desired field:
sacct --format="Account,JobID,JobName,ConsumedEnergy,NodeList" -j <jobId>

This command gives a report of each database mentioned in the above command at node
level. It is important to note that energy is monitored at node level, indicating that only
when a job is allocated exclusively to certain nodes can the energy usage measurements
accurately represent the job’s actual consumption. When using multiple nodes these
measurements depict the energy utilized by all participating nodes but do not encompass
the energy consumption of the interconnects or file system. For the energy measurement,
we run the CEEC percolation/ porous media benchmark which is essentially a channel
flow packed with two-way coupled particles, see Table 4. This benchmark covers all
relevant software features required for the final lighthouse case – Localized erosion of

Table 4: Setup description and energy measurements of the percolation benchmark using
one Graphics Compute Die of LUMI-G on an exclusively allocated node.

Cells 256 × 128 × 128
Time steps 1000
Total MLUP 4194
Total MDOF 113238
Repetitions 4
Wall time [s] 14.250
Total Energy [J] 12600
Energy efficiency [MLUPS/J] 0.333
Energy efficiency [MDOFS/J] 8.99
Standard deviation 0.041
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an offshore wind-turbine foundation. We repeat the measurement five times, skip the
first run, and report the mean along with the standard deviation since we experience the
energy consumption is higher than in the other repetitions.

5.3 Nekbone on LUMI-C
In CEEC, Neko, Nek5000, and NekRS are three high-order, incompressible Navier-Stokes
solvers based on the spectral element method. Results are provided on Nekbone [38],
which is a mini-app capturing the basic structure and design of the extensive Nek5000 [32]
software. Nekbone solves a standard Poisson equation using the Conjugate Gradient (CG)
method with a simple multigrid preconditioner which is optional when compiling.
In order to measure energy-to-solution of Nekbone, we opted to use the energy accounting
plugin provided by SLURM, owing to its simplicity. The energy consumption was retrieved
after the job had finished with sacct using the --format option with the desired field
ConsumedEnergy and specifying the job id. Table 5 reports the consumed energy in Joules
of the entire Nekbone with double and mixed-precision versions. As a note, the mixed-
precision version combines double and single precision, where single is only used in the
CG loop. The LUMI-C partition is used with an exclusively allocated node, which is
equipped with two AMD EPYC 7763 CPUs with 64 cores each running at 2.45 GHz.
Each test is run five times, and the mean as well as the standard deviation (stddev) is
computed. The reduction in energy-to-solution for the mixed-precision version correlates
with the time-to-solution and notably shows better gain, confirming the efficiency of a
mixed-precision algorithmic approach.

Table 5: Energy-to-solution in Joules of Nekbone for the case without preconditioner with
different MPI ranks on the LUMI-C partition with a single exclusive node; more details
in [9].

MPI ranks 32 stddev 64 stddev 128 stddev
Mixed 451.6 4.1% 653.6 2.4% 1089.4 1.0%
Double 990.6 3.9% 1424.8 4.5% 2061.2 3.2%
Savings 54.41% 54.12% 47.14%

As a note, while conducting measurements on the node level, we need to keep in mind
that these measurements do not take into account shared components like switches and
cooling. Therefore, the collected energy numbers do not give us the full picture but rather
provide a strong indication of the application’s energy consumption.

5.4 Neko on Alvis, HPE Cray EX, and Dardel
Neko [24] is a portable framework for high-order spectral element based simulations on
hexahedral meshes, mainly focusing on incompressible flow simulations. Karp et al. [26]
conducted power measurements of Neko on the Flettner rotor case in a turbulent boundary
layer, aiming to compare power efficiency of AMD MI250X and NVIDIA A100 GPUs.
There are three main messages here: 1/ the standard deviation of the average power
consumption per time step between these two GPUs is within 5 %; 2/ the computed
energy consumption (power multiplied by the length of the time step) is nearly constant
on GPUs. There are also numbers for the AMD EPYC 7742 CPU but those are higher
than for GPUs as they include the entire node. 3/ The energy usage per time step remains

14



nearly constant with more GPUs, maintaining parallel energy efficiency above 80% for
both GPUs and up to 90% for the MI250X, indicating minimal scaling penalties and
competitive run times.
Additionally, Neko developers included a comparison between a pure CPU node against
the one equipped with four AMD MI250X GPUs on the Dardel cluster at PDC-KTH,
resulting in 3x higher power consumption of the latter one. To collect the power metrics,
they used the power counters via rocm/ nvidia-smi for the GPUs and Cray Performance
Analysis Tool (CrayPat) for the CPUs. Note that power consumption of the network and
other peripherals are omitted.
Karp et al. [26] also highlights that obtaining accurate power numbers is a challenge as
well as that there is a need for power/ energy measurements in order to make comparisons
across heterogeneous systems.

5.5 NekRS/ Nek5000 on JUWELS Booster
Regarding energy efficiency for NekRS/ Nek5000 [16], the Jülich LLview profiling tool is
used to track the energy consumption in JUWELS Booster. LLview provides a detailed
report about various metrics, including the average GPU Power consumed by each GPU
during the run. To compute the energy consumption of the simulation, the average power
consumed by each GPU is multiplied by the number of GPUs utilized and the total
walltime of the simulation. Figure 4a presents the energy consumption in kilowatt-hours
(kWh) per 5000 timesteps for simulations with resolutions of 5123, 10243, and 20483 using
NVIDIA A100 GPUs across varying numbers of GPUs. Each increment in resolution
increases the degree of freedom (DOFs) by a factor of eight compared to the previous
resolution. The figure illustrates that the energy consumption scales approximately eight-
fold with each increase in resolution which is the same as the factor of increase of DoFs.
Figure 4b depicts the parallel efficiency in relation to the energy ratio. This, along with
the fact that NekRS can utilize 80-90% of the realizable peak memory bandwidth across
multiple platforms while sustaining 1-2 TFLOPs (10-20% of the peak computational power
of the most advanced GPUs), suggests that NekRS’s parallel and energy efficiency is
bandwidth-limited and constrained by communication overhead rather than by hardware
(computational power) when a large number of GPUs is utilized, specifically when n/P
drops below 2.5 million.

Figure 4: a) Energy consumption (kWh) for 5000 simulation timesteps for cases with
resolutions 5123, 10243 and 20483 on NVIDIA A100 (JUWELS Booster) GPUs across
varying number of GPUs b) parallel efficiency and energy efficiency for the same cases.
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6 Discussion
In this overview of experience and best practices, we provided a brief introduction to
a wide range of energy measurement methods, their restrictions, common pitfalls, and
mitigation strategies. We presented easily accessible tools and how these measurements
are handled in different European HPC systems with examples from the CEEC project.
Despite its importance, the field of energy monitoring is still in its infancy and lacks
standardization. Various tools offer different measurement possibilities. As seen from the
examples above, the members of CEEC project have already started to take advantage
of this diversity. We have started to examine available tools with respect to their ease
of use as well as, coarse and fine granularity over temporal and spatial aspects of the
application.
We observed that SLURM is the go-to way for newcomers who want to measure how
much energy their application consumes over the job’s runtime with minimal overhead. It
doesn’t require any root privileges and handles the underlying measurement infrastructure
itself, leaving nothing to users but just the exclusive allocation of resources for the run.
With this simple methodology, we were able to describe two cases in connection to the
CEEC project. EAR is an additional alternative to the SLURM plugins that in fact can be
coupled with SLURM, enabling energy measurements per job through a single line added
to the bash script. In order to measure energy consumption of particular functions inside
the code, both LIKWID and PAPI can be explored since they offer reduced developer
time in addition to fine spatial and temporal granularity access with low overhead.
However, even with the best practices in place, generalizing results to different types of
hardware and systems is a delicate task. To address this, we have introduced metrics used
in CEEC projects as an example of how to standardize experimental results. During our
research for Section 5, we found that the field lacks a convenient method for presenting
metrics, making it harder for readers to grasp the implementation details. As a result,
we recommend that researchers provide more detailed descriptions of their measurement
techniques. These descriptions should include the scope and granularity of the measure-
ments, such as whether they cover the node, core, or cooling equipment, and the intervals
between measurements. Given the variety of tools and their interdependence, as shown in
Figure 1, researchers should also specify the tools they used and their underlying method-
ologies. For example for SLURM finding this information is straightforward, as explained
in Section 3.4, and providing such information is essential for ensuring the verifiability
and reproducibility of research.
As future work, we plan to explore possible energy optimization strategies that hardware
and software providers have to offer and how researchers may take advantage of them. We
intend to engage both LIKWID and PAPI in our mixed-precision exploration. Further-
more, we consider to select 1-2 benchmarks from CFD codes and run them on all accessible
HPC systems in order to determine which system is more suitable for energy-efficient CFD
simulations.
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Appendix A Tools and Methods to Measure Energy on
European HPC Systems

As demonstrated, there are several system-dependent methods available for measuring
energy. Table 6 shows most common and potential methods and tools that can be em-
ployed on several European HPC systems; the list of machines is not exhaustive and was
formed as a result of our experiments or as a potential candidate for use. Let’s begin with
LUMI that supports SLURM energy account plug-in to measure energy on node level
as explained in Section 3.4 and shown on two CEEC examples in Sections 5.2 and 5.3.
Additionally, the system offers native access to CrayPat to measure energy consumption.
CrayPat includes support for cray pm and cray rapl components with the help of PAPI,
which is detailed in Section 3.2.2. The tool is available through perftools module [13].

Table 6: Energy measurements on European HPC systems.

HPC machine How to measure energy-to-solution
LUMI-C/ LUMI-G SLURM (pm counters), CrayPat
Leonardo Booster/ Leonardo DGCP Bull Energy Optimizer (IPMI and

SNMP), Bull Dynamic Power Optimizer;
NVIDIA dcgm

Marenostrum 4 and 5 EAR (RAPL and IPMI)
Meluxina SLURM
Karolina MERIC
Vega Bull Energy Optimizer
Juwels Booster/ Jupiter (not yet installed) LLview (NVIDIA dcgm)

Leonardo Booster and Leonardo DGCP utilize the Bull Energy Booster to monitor the
power, energy, temperature, and performance of the entire cluster infrastructure. This
monitoring is conducted out-of-band via IPMI and Simple Network Management Protocol
(SNMP). These tools can work in conjunction with SLURM to adjust certain features,
such as the way jobs are chosen according to the expected power consumption or how the
CPU frequencies are dynamically capped according to the total consumption. Moreover,
this dynamic tuning technique is complemented by a second tool called Bull Dynamic
Power Optimizer, which analyzes power usage core by core in order to cap frequencies at
the value that provides the best mix of energy savings and performance loss for running
applications. In terms of GPU power consumption, NVIDIA dcgm allows users to reduce
the GPU’s clock speeds when they exceed a preset threshold [4, 7].
Energy consumption can be measured on Marenostrum 4 and Marenostrum 5 using EAR,
see Section 3.3.1. Energy monitoring on Meluxina is performed using SLURM [6]. En-
ergy consumption on the Karolina supercomputer can be measured using MERIC run-
time system see Section 3.3.2 which was developed as a part of the READEX project.
An example of energy consumption measurement for CFD solvers based on the Lattice
Boltzmann method is explained in [2]. HPC Vega is a primary supercomputer system of
the Slovenian national research infrastructure. It also supports Bull Energy Optimizer
along with Bull SLURM and PMT to measure energy and temperature of the cluster
[8]. As the installation of Jupiter, the first European exascale supercomputer, has not
yet begun, information is subject to change, and the methods for measuring energy on
this system remain uncertain. But, the Juwels Booster supercomputer hosted by Jülich
Supercomputing Center supports LLview to monitor power and energy consumption as
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explained in Section 3.3.3 and demonstrated on NekRS in Section 5.5.
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