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Turbulent thermal convection
• Applications in nature and technology

• From chip cooling, heat exchanges in power plants, to heat convection in the 
Earth’s mantle and the sun.

• Rayleigh-Bénard convection: Canonical turbulent convection with 
fundamental open question: Is there an ultimate regime, i.e. anomalous 
scaling of Nusselt number (heat transfer) and Rayleigh number (buoyancy)?
• Long-standing open issue in turbulence (Kraichnan 1962)
• Difficult to conduct controlled experiments at high Rayleigh numbers 𝑅𝑎 > 10!"

• Challenges with direct numerical simulations
• Large computational cost due to resolution needs: ⁄𝐻 𝜂 # ∼ 𝑅𝑎$/&

• Numerical method with minimal dissipative and dispersive errors 
to capture and track small scales in time

• Produces unmanageable volumes of data

• Long integration times for steady state statistics
• Efficient implementation on modern hardware

Cooled wall

Heated wall

Illustration of the 
canonical problem at 
𝑅𝑎 = 10!", iso-surfaces 
of temperature  
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Introduction
• Exascale will require either unreasonably large problem sizes or 

significantly improved efficiency of current methods
• Finite-Volume LES of a full car on the entire K computer (京) required more 

than 100 billion grid points to run efficiently

• What problem size is needed to fill the 309 PFlop/s LUMI… 

• High-order methods
• Attractive numerical properties, small dispersion errors and more “accuracy” 

per degree of freedom
• Better suited to take advantage of modern hardware (accelerators)

Dardel: 56 nodes, 448 MI250X GCDs, ≈10 PFlop/s

京: 82944 nodes, 663552 Cores, 10 PFlop/s

...but we rather scale out 
our problems...

Accelerators works 
best with a lot of data!



Spectral Elements
• Finite Elements with high-order basis functions

• 𝑁-th order Legendre-Lagrange polynomials 𝑙' 𝜉
• Gauss-Lobatto-Legendre quadrature points 𝜉'
• Fast tensor product formulation

• 𝑢! 𝜉, 𝜂, 𝛾 = ∑",$,%& 𝑢",$,%! 𝑙" 𝜉 𝑙$ 𝜂 𝑙% 𝛾
• High-order at low cost! (Level 3 BLAS!)

• Too expensive to assemble matrices
• Element stiffness matrices 𝐴',)* with 𝑶(𝑵𝟔) non-zeros

• Matrix free formulation, key to achieve good performance in SEM
• Unassembled matrix 𝐴, = diag 𝐴!, 𝐴-, … , 𝐴. and functions 𝑢, = {𝑢/}/0!.

• Operation count is only 𝑶(𝑵𝟒) not 𝑶(𝑵𝟔)
• Boolean gather/scatter matrix 𝑄2 and 𝑄

• Ensure continuity of functions on the element level 𝑢 = 𝑄'𝑢( and 𝑢( = 𝑄𝑢

• 𝑄 and 𝑄! formed, only the action 𝑄𝑄! is used
• Matrix-vector product 𝑤 = 𝐴𝑢 ⇒ 𝑤, = 𝑄𝑄2𝐴,𝑢,

1: A.T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys. 1984
2. M. O. Deville, P. F. Fischer, E.H. Mund, High-Order Methods for Incompressible Fluid Flow, 2002

3: P.F. Fischer, J.W. Lottes, S.G. Kerkemeier, Nek5000 Web page: http://nek5000.mcs.anl.gov, 2008
4: H.M. Tufo, P.F Fischer, Terascale Spectral Element Algorithms and Implementations, Gordon-Bell prize 1999

http://nek5000.mcs.anl.gov


Portable Spectral Element Framework
• High-order spectral element flow solver

• Incompressible Navier-Stokes equations
• Matrix-free formulation, small tensor products
• Gather-scatter operationst between elements

• Modern object-oriented approach (Fortran 2008)

• Various hardware-backends
• CPUs, GPUs down to exotic vector processors and FPGAs

• Device abstraction layer for accelerators (CUDA/HIP/OpenCL)

• Modern software engineering (pFUnit, ReFrame, Spack)

solver_t

case_t

space_tgs_t

mesh_t

coef_t ax_t field_t

gs_sx_tgs_cpu_t gs_gpu_t

ax_sx_tax_cpu_t ax_gpu_t

> spack install neko+cuda ExtremeFLOW/neko
32 128 512 2,0
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Device Abstraction Layer
How to interface Fortran with accelerators?

• Native CUDA/HIP/OpenCL implementation via C-interfaces

• Device pointers in each derived type

• Abstraction layer hiding memory management

• Hash table associating x with x_d

• Kernels invoked from the object hierarchy 
via C interfaces (𝐴𝑥, vector ops)
• Wrapper functions for each supported accelerator backend
• Templated (CUDA/HIP) or pre-processor macros (OpenCL) 

for runtime parameters

• Auto/runtime tuning based on polynomial order

subroutine field_init(f,…)
type(field_t) :: f
...
call allocate(f%x(…,…,…,…,)
call device_alloc(f%x_d, size)
call device_associate(f%x, f%x_d)

cudaMalloc hipMalloc clCreateBuffer

src/
|
|-- math
| `-- bcknd
| |-- cpu
| |-- device
| | |-- cuda
| | |-- hip
| | `-- opencl
| |-- sx
| `-- xsmm



Gather-Scatter
• Uses indirect addressing and are (mostly) non-injective

• Topology aware optimisations
• Facets (single neighbour), red points

• Injective, vectorizable (always operating on sorted tuples)

• Non facets (arbitrary number of neighbours), green points
• Cannot be made injective, not vectorizable (small amount)

• Multiple levels of overlapping communication and computation
• Overlapping with non-blocking MPI (device aware)

• Asynchronous GPU kernels (neighbours in streams)
• Auto/runtime tuning of all combinations

Async. 
processing of 

neigh. data



Synchronous and Hybrid Data Compression
• Lossy compression, physics-based method:

discard data not associated with the most energetic flow motions1

• Lossless compression:
ADIOS2 operator with runtime configuration

• 97% data reduction with a relative error of 2.5%

1:  E. Otero et al., “Lossy data compression effects on wall-bounded turbulence: bounds on data reduction,” Flow, 
Turbulence and Combustion, vol. 101, no. 2, pp. 365– 387, 2018.

Fortran functions
C/C++ functions 
called in Fortran C++ functions

Nek-proc adaptor

Data passing by 
address

Lossy compression

Lossless compression

Data compressor

Output through IO

Data passing by 
address

in-situ function

Lossy compression

Data compressorNek-proc adaptor

Data selection

Proc-wrtr adaptor
Data passing by 

address

ADIOS writer
ADIOS insituMPI

writer

Lossless compression

Output through IO

Data compressor ADIOS reader
ADIOS insituMPI

reader

Rdr-proc adaptor
Data passing by 

address

in-situ function
Frequency 

Frequency 

Compressed velocity field 𝑅𝑎 = 10!!

In-situ approach2

Synchronous  compression

Hybrid compression

2: Y. Ju et al., “In-Situ Techniques on GPU-Accelerated Data-Intensive Applications,” eScience, 2023.



Performance Baseline
• Full machine runs towards the end of the LUMI-G pilot phase

• DNS of flow past a circular cylinder at 𝑅𝑒 = 50,000
• 113M elements
• 7th order polynomials (8 GLL points)

• Simulation restarted from prebaked low-order runs
• Restart checkpoint: 453GB
• Extrapolated to 7th order polynomials
• Computed solution (snapshot): 1.5TB

• Preliminary results
• Achieved close to 80% parallel efficiency
• Using 20%, 40% and 80% of the entire machine
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Numerical Method 𝑷𝑵 − 𝑷𝑵
• Time integration is performed using an implicit-explicit scheme (BDF𝑘/EXT𝑘)
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• Three velocity solves using CG with block Jacobi preconditioner (fast)

• One Pressure solve using GMRES with an additive overlapping Schwarz preconditioner (expensive)

𝑀3
4! = 𝑅32𝐴34!𝑅3 + ∑*0!5 𝑅*2 B𝐴*4!𝑅*, key is to have a scalable coarse grid solver

Coarse grid (linear elements)
1. G.E. Karniadakis, M. Israeli, S.A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput Phys, 1991



Additive Schwarz Preconditioner on GPUs
• Coarse grid solved using an approximate Krylov solver

• Preconditioned Pipelined Conjugate Gradient with a low, maximum iteration limit

• Low computational efficiency on GPUs
• 𝐴3 is on linear elements, too little data to keep the GPU busy.

• Many small kernels, dominated by kernel launch latency

GPU HW
activity

GPU 
streams

NVTX
host regions

CUDA API

𝑀$
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Task-decomposed Overlapped Preconditioner 
• Exploit available task-parallelism

• Launch the left and right part of 𝑀.
/0 in parallel on the device

• Launch independent work in parallel from different threads in an OpenMP region
• Launch tasks in separate streams to allow overlap and increase GPU utilization

• Maximise kernel overlap using stream priority to ensure progress in both stream

GPU HW
activity

GPU 
streams

NVTX
host regions

CUDA API

NVTX
host regions
(coarse-solve)

CUDA API
(coarse-solve)

𝑀$
') = 𝑅$!𝐴$')𝑅$ +%

%#)

*

𝑅%! 8𝐴%')𝑅%

Thread 0 Thread 1

Stream 1 Stream 2



Performance Results
• Performance measurements on two of the EuroHPC-JU 

pre-exascale supercomputers LUMI and Leonardo

• Experiments were performed between 
• March–April 2023 on LUMI 
• April 2023 on Leonardo (pre-production)

• RBC in a cylinder with aspect ratio 1:10
• 𝑅𝑎 = 10!"

• 108M elements, 7th order polynomials
• 37B unique grid points and more

than 148B degrees of freedom 

• Strong Scalability
• Average time per timestep (after transient)

• One MPI rank per logical GPU
• One rank per GCD (AMD)
• One rank per device (Nvidia)

System LUMI Leonardo

Computing device AMD MI250X Nvidia A100 (custom)

Peak Tflop FP64/s 47.9 (95.7 Matrix) 11.2 (22.4)

Peak BW/s 3300 1640

No. devices 10240 13824

Interconnect HPE Slingshot 11
200 GbE NICs (4x200 Gb/s)

Nvidia HDR
2x(2x100 Gb/s)

MPI Cray MPICH 8.1.18 OpenMPI 4.1.4

Compiler CCE 14.0.2 GCC 8.5.0

GPU Driver 5.16.9.22.20 520.61.05

CUDA/ROCm ROCm 5.2.3 CUDA 11.8



Performance Results

• Close to perfect parallel efficiency on both 
LUMI and Leonardo

• Close to perfect parallel efficiency with less 
than 7000 elements per logical GPU 

• Significantly reducing the smallest required 
problem size for strong scalability limits

• Improvements mainly due to the new 
overlapped pressure preconditioner
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Summary
• Insight into Rayleigh-Bénard convection

• The question about an ultimate regime can only be settled through 
simulations made possible through the developments in this work

• In-situ data processing
• Hybrid data compression, streaming data to the CPU for online 

post-processing
while the simulation continues to run on the GPU

• New ways of analysing and processing data from simulations

• Task-decomposed overlapped pressure preconditioner
• Expressing more of the  available concurrency of the application

• Key ingredient to achieve good strong scalability on LUMI and 
Leonardo

Swedish 
Research 
Council




