

Exploring the Ultimate Regime of Turbulent Rayleigh-Bénard Convection through Unprecedented Spectral-Element Simulations

Niclas Jansson¹, Martin Karp¹, Adalberto Perez¹, Timofey Mukha¹, Yi Ju², Jiahui Liu¹, Szilárd Páll¹, Erwin Laure², Tino Weinkauf¹, Jörg Schumacher³, Philipp Schlatter^{4,1}, Stefano Markidis¹

¹KTH Royal Institute of Technology, ²Max Planck Computing and Data Facility, ³Technische Universität Ilmenau, ⁴Friedrich-Alexander-Universität Erlangen-Nürnberg

Team

Martin Karp

Adalberto Perez

Timofey Mukha

Szilárd Páll Jiahui Liu

Erwin Laure

Friedrich-Alexander-Universität Erlangen-Nürnberg

th TECHNISCHE UNIVERSITÄT ILMENAU

Turbulent thermal convection

- Applications in nature and technology
 - From chip cooling, heat exchanges in power plants, to heat convection in the Earth's mantle and the sun.
- Rayleigh-Bénard convection: Canonical turbulent convection with fundamental open question: Is there an ultimate regime, i.e. anomalous scaling of Nusselt number (heat transfer) and Rayleigh number (buoyancy)?
 - Long-standing open issue in turbulence (Kraichnan 1962)
 - Difficult to conduct controlled experiments at high Rayleigh numbers $Ra > 10^{15}$
- Challenges with direct numerical simulations
 - Large computational cost due to resolution needs: $(H/\eta)^3 \sim Ra^{9/8}$
 - Numerical method with **minimal dissipative and dispersive errors** to capture and track small scales in time
 - Produces unmanageable volumes of data
 - Long integration times for steady state statistics
 - Efficient implementation on modern hardware

Illustration of the canonical problem at $Ra = 10^{13}$, iso-surfaces of temperature

Cooled wall

Introduction

- Exascale will require either **unreasonably large problem** sizes or • significantly improved efficiency of current methods
 - Finite-Volume LES of a full car on the entire K computer (京) required **more** than 100 billion grid points to run efficiently
 - What problem size is needed to fill the 309 PFlop/s LUMI... •
- High-order methods
 - Attractive numerical properties, small dispersion errors and more "accuracy" per degree of freedom
 - Better suited to take advantage of **modern hardware** (accelerators)

京: 82944 nodes, 663552 Cores, 10 PFlop/s

Dardel: 56 nodes, 448 MI250X GCDs, ≈10 PFlop/s

CEED BK5, 9th order polynomials

Spectral Elements

- Finite Elements with high-order basis functions
 - N-th order Legendre-Lagrange polynomials $l_i(\xi)$
 - Gauss-Lobatto-Legendre quadrature points ξ_i
 - Fast tensor product formulation
 - $u^e(\xi,\eta,\gamma) = \sum_{i,j,k}^N u^e_{i,j,k} l_i(\xi) l_j(\eta) l_k(\gamma)$
 - High-order at low cost! (Level 3 BLAS!)
- Too expensive to assemble matrices
 - Element stiffness matrices $A_{i,j}^k$ with $O(N^6)$ non-zeros
- Matrix free formulation, key to achieve good performance in SEM
 - Unassembled matrix $A_L = \text{diag}\{A^1, A^2, \dots, A^E\}$ and functions $u_L = \{u^e\}_{e=1}^E$
 - Operation count is only $O(N^4)$ not $O(N^6)$
 - Boolean gather/scatter matrix Q^T and Q
 - Ensure continuity of functions on the element level $u = Q^T u_L$ and $u_L = Q u$
- Q and Q^T formed, only the action QQ^T is used
 - Matrix-vector product $w = Au \Rightarrow w_L = QQ^T A_L u_L$

Portable Spectral Element Framework NEKO

- High-order spectral element flow solver
 - Incompressible Navier-Stokes equations
 - Matrix-free formulation, small tensor products
 - Gather-scatter operationst between elements
- Modern object-oriented approach (Fortran 2008)

```
! Base type for a matrix-vector product providing Ax
type, abstract :: ax_t
 contains
  procedure(ax_compute), nopass, deferred :: compute
end type ax_t
! Abstract interface for computing Ax
abstract interface
   subroutine ax_compute(w, u, coef, msh, Xh)
     implicit none
     type(space_t), intent(inout) :: Xh
     type(mesh_t), intent(inout) :: msh
     type(coef_t), intent(inout) :: coef
     real(kind=dp), intent(inout) :: w(:,:,:,:)
     real(kind=dp), intent(inout) :: u(:,:,:,:)
   end subroutine ax_compute
end interface
```

- case_t mesh_t solver_t gs_t space_t coef_t ax_t field_t gs_cpu_t gs_sx_t gs_gpu_t ax_cpu_t ax_sx_t ax_gpu_t
- Various hardware-backends
 - CPUs, GPUs down to exotic vector processors and FPGAs
 - Device abstraction layer for accelerators (CUDA/HIP/OpenCL)
 - Modern software engineering (pFUnit, ReFrame, Spack)

www.neko.cfd

Device Abstraction Layer

How to interface Fortran with accelerators?

• Native CUDA/HIP/OpenCL implementation via C-interfaces

src/

-- math

`-- bcknd

-- cpu

-- sx -- xsmm

-- device

|-- cuda

|-- hip

-- opencl

• Device pointers in each derived type

- Abstraction layer hiding memory management
- Hash table associating x with x_d
- Kernels invoked from the object hierarchy via C interfaces (Ax, vector ops)
 - Wrapper functions for each supported accelerator backend
 - **Templated** (CUDA/HIP) or **pre-processor macros** (OpenCL) for runtime parameters
- Auto/runtime tuning based on polynomial order

```
!> Enum @a hipError_t
enum, bind(c)
   enumerator :: hipSuccess = 0
end enum
!> Enum @a hipMemcpyKind
enum, bind(c)
   enumerator :: hipMemcpyHostToHost = 0
   enumerator :: hipMemcpyHostToDevice = 1
end enum
interface
   integer (c int) function hipMalloc(ptr d, s) &
        bind(c, name='hipMalloc')
     use, intrinsic :: iso_c_binding
     implicit none
     type(c_ptr) :: ptr_d
     integer(c_size_t), value :: s
   end function hipMalloc
end interface
```


Gather-Scatter

- Uses indirect addressing and are (mostly) non-injective
- Topology aware optimisations
 - Facets (single neighbour), red points
 - Injective, vectorizable (always operating on sorted tuples)
 - Non facets (arbitrary number of neighbours), green points
 - Cannot be made injective, not vectorizable (small amount)
- Multiple levels of overlapping communication and computation
 - Overlapping with non-blocking MPI (device aware)
 - Asynchronous GPU kernels (neighbours in streams)
 - Auto/runtime tuning of all combinations

Synchronous and Hybrid Data Compression

Turbulence and Combustion, vol. 101, no. 2, pp. 365–387, 2018.

Performance Baseline

- Full machine runs towards the end of the LUMI-G pilot phase
- DNS of flow past a circular cylinder at Re = 50,000
 - 113M elements
 - 7th order polynomials (8 GLL points)
- Simulation restarted from prebaked low-order runs
 - Restart checkpoint: 453GB
 - Extrapolated to 7th order polynomials
 - Computed solution (snapshot): 1.5TB
- Preliminary results
 - Achieved close to 80% parallel efficiency
 - Using 20%, 40% and 80% of the entire machine

Cylinder Re $50k,\,113M$ el., 7th order poly.

Numerical Method $P_N - P_N$

• Time integration is performed using an implicit-explicit scheme (BDFk/EXTk)

$$\sum_{j=0}^{k} \frac{b_j}{dt} u^{n-j} = -\nabla p^n + \frac{1}{Re} \nabla^2 u^n + \sum_{j=1}^{k} a_j \left(u^{n-j} \cdot \nabla u^{n-j} + f^n \right)$$

with b_k and a_k coefficients of the implicit-explicit scheme, solving at time-step n

$$\Delta p^{n} = \sum_{j=1}^{k} a_{j} \left(u^{n-j} \cdot \nabla u^{n-j} + f^{n} \right)$$
$$\frac{1}{Re} \Delta u^{n} - \frac{b_{0}}{dt} u^{n} = \nabla p^{n} + \sum_{j=1}^{k} \left(\frac{b_{j}}{dt} u^{n-j} + a_{j} \left(u^{n-j} \cdot \nabla u^{n-j} + f^{n} \right) \right)$$

- Three velocity solves using CG with block Jacobi preconditioner (fast)
- One Pressure solve using GMRES with an additive overlapping Schwarz preconditioner (**expensive**)

$$M_0^{-1} = R_0^T A_0^{-1} R_0 + \sum_{k=1}^K R_k^T \tilde{A}_k^{-1} R_k, \text{ key is to have a scalable coarse grid solver}$$

Coarse grid (linear elements)

1. G.E. Karniadakis, M. Israeli, S.A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput Phys, 1991

Additive Schwarz Preconditioner on GPUs

- Coarse grid solved using an approximate Krylov solver
 - Preconditioned Pipelined Conjugate Gradient with a low, maximum iteration limit
- Low computational efficiency on GPUs
 - A_0 is on linear elements, too little data to keep the GPU busy.
 - Many small kernels, dominated by kernel launch latency

Task-decomposed Overlapped Preconditioner

• Exploit available **task-parallelism**

- Launch the left and right part of M_0^{-1} in parallel on the device
- Launch independent work in parallel from **different threads** in an OpenMP region
- Launch tasks in **separate streams** to allow overlap and increase GPU utilization
- Maximise kernel overlap using stream priority to ensure progress in both stream

Thread 1

K

 $M_0^{-1} = R_0^T A_0^{-1} R_0$

Performance Results

- Performance measurements on two of the EuroHPC-JU pre-exascale supercomputers LUMI and Leonardo
- Experiments were performed between
 - March–April 2023 on LUMI
 - April 2023 on Leonardo (pre-production)
- RBC in a cylinder with aspect ratio 1:10
 - $Ra = 10^{15}$
 - 108M elements, 7th order polynomials
 - 37B unique grid points and more than 148B degrees of freedom
- Strong Scalability
 - Average time per timestep (after transient)
- One MPI rank per logical GPU
 - One rank per GCD (AMD)
 - One rank per device (Nvidia)

System	LUMI	Leonardo
Computing device	AMD MI250X	Nvidia A100 (custom)
Peak Tflop FP64/s	47.9 (95.7 Matrix)	11.2 (22.4)
Peak BW/s	3300	1640
No. devices	10240	13824
Interconnect	HPE Slingshot 11 200 GbE NICs (4x200 Gb/s)	Nvidia HDR 2x(2x100 Gb/s)
MPI	Cray MPICH 8.1.18	OpenMPI 4.1.4
Compiler	CCE 14.0.2	GCC 8.5.0
GPU Driver	5.16.9.22.20	520.61.05
CUDA/ROCm	ROCm 5.2.3	CUDA 11.8

Performance Results

- Close to perfect parallel efficiency on both LUMI and Leonardo
- Close to perfect parallel efficiency with less than 7000 elements per logical GPU
- Significantly reducing the smallest required problem size for strong scalability limits
- Improvements mainly due to the new overlapped pressure preconditioner

RBC Ra 10^{15} , 108M el., 7th order poly.

99% confidence intervals is illustrated as error bars

Summary

- Insight into Rayleigh-Bénard convection
 - The question about an ultimate regime can only be settled through simulations made possible through the developments in this work
- In-situ data processing
 - Hybrid data compression, streaming data to the CPU for online post-processing while the simulation continues to run on the GPU
 - New ways of analysing and processing data from simulations
- Task-decomposed overlapped pressure preconditioner
 - Expressing more of the available concurrency of the application
 - Key ingredient to achieve good strong scalability on LUMI and Leonardo

SCRC Swedish e-Science Research Centre

malleable data solution

