
Exploring the Ultimate Regime of Turbulent
Rayleigh-Bénard Convection through

Unprecedented Spectral-Element Simulations

Niclas Jansson1, Martin Karp1, Adalberto Perez1, Timofey Mukha1, Yi Ju2, Jiahui Liu1, Szilárd Páll1,
Erwin Laure2, Tino Weinkauf1, Jörg Schumacher3, Philipp Schlatter4,1, Stefano Markidis1

1KTH Royal Institute of Technology, 2Max Planck Computing and Data Facility,
3Technische Universität Ilmenau, 4Friedrich-Alexander-Universität Erlangen-Nürnberg

Team

Martin Karp Adalberto Perez Timofey Mukha Szilárd PállYi Ju Jiahui Liu

Tino Weinkauf Stefano MarkidisPhilipp SchlatterJörg SchumacherErwin Laure

Turbulent thermal convection
• Applications in nature and technology

• From chip cooling, heat exchanges in power plants, to heat convection in the
Earth’s mantle and the sun.

• Rayleigh-Bénard convection: Canonical turbulent convection with
fundamental open question: Is there an ultimate regime, i.e. anomalous
scaling of Nusselt number (heat transfer) and Rayleigh number (buoyancy)?
• Long-standing open issue in turbulence (Kraichnan 1962)
• Difficult to conduct controlled experiments at high Rayleigh numbers 𝑅𝑎 > 10!"

• Challenges with direct numerical simulations
• Large computational cost due to resolution needs: ⁄𝐻 𝜂 # ∼ 𝑅𝑎$/&

• Numerical method with minimal dissipative and dispersive errors
to capture and track small scales in time

• Produces unmanageable volumes of data

• Long integration times for steady state statistics
• Efficient implementation on modern hardware

Cooled wall

Heated wall

Illustration of the
canonical problem at
𝑅𝑎 = 10!", iso-surfaces
of temperature

128 256 512 1,0
24

2,0
48

4,0
96

8,1
92

0

1

2

Elements

T
fl
o
p
/
s

CEED BK5, 9th order polynomials

Nvidia A100

AMD 7742

Introduction
• Exascale will require either unreasonably large problem sizes or

significantly improved efficiency of current methods
• Finite-Volume LES of a full car on the entire K computer (京) required more

than 100 billion grid points to run efficiently

• What problem size is needed to fill the 309 PFlop/s LUMI…

• High-order methods
• Attractive numerical properties, small dispersion errors and more “accuracy”

per degree of freedom
• Better suited to take advantage of modern hardware (accelerators)

Dardel: 56 nodes, 448 MI250X GCDs, ≈10 PFlop/s

京: 82944 nodes, 663552 Cores, 10 PFlop/s

...but we rather scale out
our problems...

Accelerators works
best with a lot of data!

Spectral Elements
• Finite Elements with high-order basis functions

• 𝑁-th order Legendre-Lagrange polynomials 𝑙' 𝜉
• Gauss-Lobatto-Legendre quadrature points 𝜉'
• Fast tensor product formulation

• 𝑢! 𝜉, 𝜂, 𝛾 = ∑",$,%& 𝑢",$,%! 𝑙" 𝜉 𝑙$ 𝜂 𝑙% 𝛾
• High-order at low cost! (Level 3 BLAS!)

• Too expensive to assemble matrices
• Element stiffness matrices 𝐴',)* with 𝑶(𝑵𝟔) non-zeros

• Matrix free formulation, key to achieve good performance in SEM
• Unassembled matrix 𝐴, = diag 𝐴!, 𝐴-, … , 𝐴. and functions 𝑢, = {𝑢/}/0!.

• Operation count is only 𝑶(𝑵𝟒) not 𝑶(𝑵𝟔)
• Boolean gather/scatter matrix 𝑄2 and 𝑄

• Ensure continuity of functions on the element level 𝑢 = 𝑄'𝑢(and 𝑢(= 𝑄𝑢

• 𝑄 and 𝑄! formed, only the action 𝑄𝑄! is used
• Matrix-vector product 𝑤 = 𝐴𝑢 ⇒ 𝑤, = 𝑄𝑄2𝐴,𝑢,

1: A.T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys. 1984
2. M. O. Deville, P. F. Fischer, E.H. Mund, High-Order Methods for Incompressible Fluid Flow, 2002

3: P.F. Fischer, J.W. Lottes, S.G. Kerkemeier, Nek5000 Web page: http://nek5000.mcs.anl.gov, 2008
4: H.M. Tufo, P.F Fischer, Terascale Spectral Element Algorithms and Implementations, Gordon-Bell prize 1999

http://nek5000.mcs.anl.gov

Portable Spectral Element Framework
• High-order spectral element flow solver

• Incompressible Navier-Stokes equations
• Matrix-free formulation, small tensor products
• Gather-scatter operationst between elements

• Modern object-oriented approach (Fortran 2008)

• Various hardware-backends
• CPUs, GPUs down to exotic vector processors and FPGAs

• Device abstraction layer for accelerators (CUDA/HIP/OpenCL)

• Modern software engineering (pFUnit, ReFrame, Spack)

solver_t

case_t

space_tgs_t

mesh_t

coef_t ax_t field_t

gs_sx_tgs_cpu_t gs_gpu_t

ax_sx_tax_cpu_t ax_gpu_t

> spack install neko+cuda ExtremeFLOW/neko
32 128 512 2,0

48
8,1

92
32,

768

10�1

100

101

PEs

A
v
g.

ti
m
e
p
er

ti
m
es
te
p
(s
ec
.)

Neko, Taylor-Green vortex, Re = 5000

Piz Daint

Beskow

Vulcan

Dardel

Alvis

DEEP

JUWELS

LUMI

GPU

SX

CPU

www.neko.cfd

Device Abstraction Layer
How to interface Fortran with accelerators?

• Native CUDA/HIP/OpenCL implementation via C-interfaces

• Device pointers in each derived type

• Abstraction layer hiding memory management

• Hash table associating x with x_d

• Kernels invoked from the object hierarchy
via C interfaces (𝐴𝑥, vector ops)
• Wrapper functions for each supported accelerator backend
• Templated (CUDA/HIP) or pre-processor macros (OpenCL)

for runtime parameters

• Auto/runtime tuning based on polynomial order

subroutine field_init(f,…)
type(field_t) :: f
...
call allocate(f%x(…,…,…,…,)
call device_alloc(f%x_d, size)
call device_associate(f%x, f%x_d)

cudaMalloc hipMalloc clCreateBuffer

src/
|
|-- math
| `-- bcknd
| |-- cpu
| |-- device
| | |-- cuda
| | |-- hip
| | `-- opencl
| |-- sx
| `-- xsmm

Gather-Scatter
• Uses indirect addressing and are (mostly) non-injective

• Topology aware optimisations
• Facets (single neighbour), red points

• Injective, vectorizable (always operating on sorted tuples)

• Non facets (arbitrary number of neighbours), green points
• Cannot be made injective, not vectorizable (small amount)

• Multiple levels of overlapping communication and computation
• Overlapping with non-blocking MPI (device aware)

• Asynchronous GPU kernels (neighbours in streams)
• Auto/runtime tuning of all combinations

Async.
processing of

neigh. data

Synchronous and Hybrid Data Compression
• Lossy compression, physics-based method:

discard data not associated with the most energetic flow motions1

• Lossless compression:
ADIOS2 operator with runtime configuration

• 97% data reduction with a relative error of 2.5%

1: E. Otero et al., “Lossy data compression effects on wall-bounded turbulence: bounds on data reduction,” Flow,
Turbulence and Combustion, vol. 101, no. 2, pp. 365– 387, 2018.

Fortran functions
C/C++ functions
called in Fortran C++ functions

Nek-proc adaptor

Data passing by
address

Lossy compression

Lossless compression

Data compressor

Output through IO

Data passing by
address

in-situ function

Lossy compression

Data compressorNek-proc adaptor

Data selection

Proc-wrtr adaptor
Data passing by

address

ADIOS writer
ADIOS insituMPI

writer

Lossless compression

Output through IO

Data compressor ADIOS reader
ADIOS insituMPI

reader

Rdr-proc adaptor
Data passing by

address

in-situ function
Frequency

Frequency

Compressed velocity field 𝑅𝑎 = 10!!

In-situ approach2

Synchronous compression

Hybrid compression

2: Y. Ju et al., “In-Situ Techniques on GPU-Accelerated Data-Intensive Applications,” eScience, 2023.

Performance Baseline
• Full machine runs towards the end of the LUMI-G pilot phase

• DNS of flow past a circular cylinder at 𝑅𝑒 = 50,000
• 113M elements
• 7th order polynomials (8 GLL points)

• Simulation restarted from prebaked low-order runs
• Restart checkpoint: 453GB
• Extrapolated to 7th order polynomials
• Computed solution (snapshot): 1.5TB

• Preliminary results
• Achieved close to 80% parallel efficiency
• Using 20%, 40% and 80% of the entire machine

4,096 8,192 16,384

10�0.5

100

GCDs

A
v
g
.
ti
m
e
p
er

ti
m
es
te
p
(s
ec
.)

Cylinder Re 50k, 113M el., 7th order poly.

LUMI-G

Numerical Method 𝑷𝑵 − 𝑷𝑵
• Time integration is performed using an implicit-explicit scheme (BDF𝑘/EXT𝑘)

%
"#$

%
𝑏"
𝑑𝑡 𝑢

&'" = −∇𝑝& +
1
𝑅𝑒 ∇

(𝑢& +%
"#)

%

𝑎" 𝑢&'" ⋅ ∇𝑢&'" + 𝑓&

with 𝑏% and 𝑎% coefficients of the implicit-explicit scheme, solving at time-step 𝑛

Δ𝑝& =%
"#)

%

𝑎" 𝑢&'" ⋅ ∇𝑢&'" + 𝑓&

1
𝑅𝑒 Δ𝑢

& −
𝑏$
𝑑𝑡 𝑢

& = ∇𝑝& + %
"#)

%
𝑏"
𝑑𝑡 𝑢

&'" + 𝑎" 𝑢&'" ⋅ ∇𝑢&'" + 𝑓&

• Three velocity solves using CG with block Jacobi preconditioner (fast)

• One Pressure solve using GMRES with an additive overlapping Schwarz preconditioner (expensive)

𝑀3
4! = 𝑅32𝐴34!𝑅3 + ∑*0!5 𝑅*2 B𝐴*4!𝑅*, key is to have a scalable coarse grid solver

Coarse grid (linear elements)
1. G.E. Karniadakis, M. Israeli, S.A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput Phys, 1991

Additive Schwarz Preconditioner on GPUs
• Coarse grid solved using an approximate Krylov solver

• Preconditioned Pipelined Conjugate Gradient with a low, maximum iteration limit

• Low computational efficiency on GPUs
• 𝐴3 is on linear elements, too little data to keep the GPU busy.

• Many small kernels, dominated by kernel launch latency

GPU HW
activity

GPU
streams

NVTX
host regions

CUDA API

𝑀$
') = 𝑅$!𝐴$')𝑅$ +%

%#)

*

𝑅%! 8𝐴%')𝑅%

Task-decomposed Overlapped Preconditioner
• Exploit available task-parallelism

• Launch the left and right part of 𝑀.
/0 in parallel on the device

• Launch independent work in parallel from different threads in an OpenMP region
• Launch tasks in separate streams to allow overlap and increase GPU utilization

• Maximise kernel overlap using stream priority to ensure progress in both stream

GPU HW
activity

GPU
streams

NVTX
host regions

CUDA API

NVTX
host regions
(coarse-solve)

CUDA API
(coarse-solve)

𝑀$
') = 𝑅$!𝐴$')𝑅$ +%

%#)

*

𝑅%! 8𝐴%')𝑅%

Thread 0 Thread 1

Stream 1 Stream 2

Performance Results
• Performance measurements on two of the EuroHPC-JU

pre-exascale supercomputers LUMI and Leonardo

• Experiments were performed between
• March–April 2023 on LUMI
• April 2023 on Leonardo (pre-production)

• RBC in a cylinder with aspect ratio 1:10
• 𝑅𝑎 = 10!"

• 108M elements, 7th order polynomials
• 37B unique grid points and more

than 148B degrees of freedom

• Strong Scalability
• Average time per timestep (after transient)

• One MPI rank per logical GPU
• One rank per GCD (AMD)
• One rank per device (Nvidia)

System LUMI Leonardo

Computing device AMD MI250X Nvidia A100 (custom)

Peak Tflop FP64/s 47.9 (95.7 Matrix) 11.2 (22.4)

Peak BW/s 3300 1640

No. devices 10240 13824

Interconnect HPE Slingshot 11
200 GbE NICs (4x200 Gb/s)

Nvidia HDR
2x(2x100 Gb/s)

MPI Cray MPICH 8.1.18 OpenMPI 4.1.4

Compiler CCE 14.0.2 GCC 8.5.0

GPU Driver 5.16.9.22.20 520.61.05

CUDA/ROCm ROCm 5.2.3 CUDA 11.8

Performance Results

• Close to perfect parallel efficiency on both
LUMI and Leonardo

• Close to perfect parallel efficiency with less
than 7000 elements per logical GPU

• Significantly reducing the smallest required
problem size for strong scalability limits

• Improvements mainly due to the new
overlapped pressure preconditioner

4,096 8,192 16,384

0.25

0.5

1

Number of logical GPUs

A
v
g.

ti
m
e
p
er

ti
m
es
te
p
(s
ec
.)

RBC Ra 1015, 108M el., 7th order poly.

LUMI

Leonardo

Ideal

99% confidence intervals is illustrated as error bars

Summary
• Insight into Rayleigh-Bénard convection

• The question about an ultimate regime can only be settled through
simulations made possible through the developments in this work

• In-situ data processing
• Hybrid data compression, streaming data to the CPU for online

post-processing
while the simulation continues to run on the GPU

• New ways of analysing and processing data from simulations

• Task-decomposed overlapped pressure preconditioner
• Expressing more of the available concurrency of the application

• Key ingredient to achieve good strong scalability on LUMI and
Leonardo

Swedish
Research
Council

