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Numbers and counting

Kids often count: one, two, three, many

We are used to the 10-base system

Source: Wikipedia

20-base system was also common, e.g. Maya, and is still in use in France
and Denmark

But, computers use binary system
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Binary numbers

Computers usually store numbers in binary form:

(

4 bit︷︸︸︷
1101)2 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = (13)10

Fractional binary numbers:

(.1101)2 = 1 · 2−1 + 1 · 2−2 + 0 · 2−3 + 1 · 2−4

=
1

2
+

1

4
+ 0 +

1

16
=

13

16
= (0.8125)10

Note: The decimal fractions 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9 cannot be
exactly represented as a fractional binary number!

But (0.125)10 =

(
1

8

)
10

= 100 · 2−3 = (.001)2 is fine.
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Floating-point arithmetic (1/2)

Computer arithmetic approximates real numbers with finite formats

Floating-point operations (+,×) are commutative but non-associative

(a+ b) + c ̸= a+ (b+ c)

(−1 + 1) + 2−53 ̸= −1 + (1 + 2−53) in double precision

1 = (1.0000000000000000000000000000000000000000000000000000︸ ︷︷ ︸
1...52

)2

2−53 = (0.0000000000000000000000000000000000000000000000000000︸ ︷︷ ︸
1...52

1)2

Another example is summation in ascending or descending orders

Consequence: results and accuracy of floating-point computations
depend on the order of computation especially in parallel
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Floating-point arithmetic (2/2)
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Mixed-precision arithmetic
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Mixed-precision arithmetic
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Sustainable HPC → Energy-efficient HPC

Energy-efficient architectures
such as graphic processors
(GPUs) and FPGAs – Green HPC
computing

PDC@KTH extracts the produced
heat to warm up the main
campus

CSCS at Switzerland proposes
‘free cooling’ with the water from
the lake of Lugano
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Precision & Sustainability

Exascale computing and linear algebra
Exascale computing is constrained by power consumption

→ Power-efficient hardware
RIKEN’s Fugaku w A64FX (FP64:FP32:FP16 = 1:2:4)
EPI (ARM, FPGA, RISC-V)

Source: Fujitsu

Linear algebra is known to be dominant by double precision

→ Sustainable algorithms
math Mixed and adaptive precision computing
code Communication hiding or avoiding
tools Numerical abnormalities and precision cropping
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Sustainable algorithmic solutions

Inspection w tools → Strategy → Revision of algorithms

1 Arithmetic tool applied to code → manual/ automatic

2 if the reduction is possible, derive algorithmic solutions
3 conduct probabilistic (aka optimistic) error analysis

error bound with constant
√
nµ with high probability

4 implement on hardware with stochastic rounding support –
randomly maps x to one of two bounds
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Analysis with tools: VerifiCarlo

– an automatic tool for debugging and assessing FP
precision based on Monte Carlo Arithmetic

Backends: debugging (MCA) and mixed-precision (Vprec)

Eg setting r = 5 and p = 10, Vprec simulates a binary16
embedded inside a binary32

More details: https://github.com/verificarlo and
InterFLOP project https://www.interflop.fr/

Roman Iakymchuk (Umeå University) FAU, Erlangen, December 13th 12 / 21

https://github.com/verificarlo
https://www.interflop.fr/


VerifiCarlo-Vprec Example

The Newton-Raphson method for inverse of πa

aPablo Oliveira et al. Automatic exploration of reduced floating-point representations
in iterative methods. Euro-Par 2019
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Test cases

NEK5000 is a high order, incompressible Navier-Stokes solver
based on the spectral element method

→ Nekbone solves a Poisson equation using a Conjugate Gradient
method with a simple or spectral element multigrid preconditioner

FLEXI is high-order accurate, open source solver for general
PDEs of hyperbolic/parabolic-type based on the DG-SEM
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Nekbone w Vprec
Basic example w/o preconditioner
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Nekbone w Vprec
Multigrid Preconditioner Example
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Nekbone w MCA
Multigrid Preconditioner Example

20 MCA samples for the previously found Vprec configuration
simulate binary32

Roman Iakymchuk (Umeå University) FAU, Erlangen, December 13th 17 / 21



FLEXI
FLEXI finds the spatial solution of the Navier-Stokes equations and
performs the time integration → a simple ODE in the form of Ut = R(U)

The ODE in time is solved with explicit Runge-Kutta

Temporal evolution of the Taylor-Green vortex. Shown are contours of vorticity.
Courtesy of Andrea Beck
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FLEXI results

First attempt
Instrument the entire FLEXI application

Run tests for various precisions 53, 52, ..., 20 bits for short time

“ERROR: Legendre Gauss nodes could not be computed up to desired
precision. Code stopped!"

→ construction of the bases requires high precision

Refined attempt
Focus on the compute heavy function that calculates the weak DG-SEM
space operator from surface, volume and source contributions
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FLEXI results
Focus on velocity magnitude: solid line is original in FP64 while dashed is

VPREC w 23bits
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Summary

mixed-precision algorithmic solutions is a way toward sustainable
computing

computer arithmetic tools help to estimate precision needs
Per case base and even mixed-precision binary

numerical techniques help to craft robust and adaptive solvers

employ computer arithmetic tools fora

numerical abnormalities detection
precision inspection
numerical CI

aInterFLOP: https://www.interflop.fr/

Thank you for your attention !
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