A tool-driven approach toward mixed-precision and sustainable solvers for CFD codes

Roman lakymchuk¹ joint work with Pablo Oliveira (Paris-Saclay)

Umeå University, Sweden riakymch@cs.umu.se

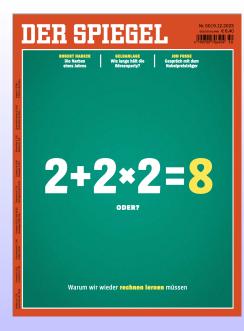
CEEC Community Workshop Energy-Efficient, Fault Resilient, and Scalable Solvers for CFD Codes FAU, Erlangen, Germany

December 13th, 2023

¹This research is partially funded by EuroHPC JU CoE CEEC (No. 101093393)

Roman lakymchuk (Umeå University)

FAU, Erlangen, December 13th 1/21



Roman lakymchuk (Umeå University)

• Kids often count: one, two, three, many

Numbers and counting

Kids often count: one, two, three, many

We are used to the 10-base system
※※※※※※※※
0123456789
??384६७८?
. ٩ Λ ٧ ٦ ॰ ٤ ٣ ٢ ١
〇 一 二 三 四 五 六 七 八 九
零 壹 贰 参 肆 伍 陆 柒 捌 玖
– I || ||| IV V VI VII VIII IX

Source: Wikipedia

Numbers and counting

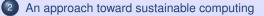
Kids often count: one, two, three, many

Source: Wikipedia

- 20-base system was also common, e.g. Maya, and is still in use in France and Denmark
- But, computers use binary system

Outline

Floating-point arithmetic



Examples of precision analysis

Computers usually store numbers in binary form:

$$\overbrace{(1101)_2}^{\text{4 bit}} = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = (13)_{10}$$

• Fractional binary numbers:

$$(.1101)_2 = 1 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3} + 1 \cdot 2^{-4}$$
$$= \frac{1}{2} + \frac{1}{4} + 0 + \frac{1}{16} = \frac{13}{16} = (0.8125)_{10}$$

• *Note:* The decimal fractions 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9 cannot be exactly represented as a fractional binary number!

• But
$$(0.125)_{10} = \left(\frac{1}{8}\right)_{10} = 10^0 \cdot 2^{-3} = (.001)_2$$
 is fine.

Floating-point arithmetic (1/2)

• Computer arithmetic approximates real numbers with finite formats

Floating-point arithmetic (1/2)

Computer arithmetic approximates real numbers with finite formats

• Floating-point operations (+,×) are commutative but non-associative

Floating-point arithmetic (1/2)

Computer arithmetic approximates real numbers with finite formats

• Floating-point operations (+,×) are commutative but non-associative

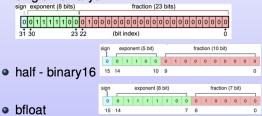
- Another example is summation in ascending or descending orders
- Consequence: results and accuracy of floating-point computations depend on the order of computation especially in parallel

Floating-point arithmetic (2/2)

Almost all computer hardware and software support the **IEEE Standard** for Floating-Point Arithmetic IEEE 754-2019

o double - binary64

single - binary32



• double-single plus iterative refinement

Roman lakymchuk (Umeå University)

- double-single plus iterative refinement
- o double-single-half/ bfloat
- Over 100 works on mixed precision ^a

^aNicholas Higham and Théo Mary. 'Mixed Precision Algorithms in Numerical Linear Algebra'

- double-single plus iterative refinement
- o double-single-half/ bfloat
- Over 100 works on mixed precision
- Extending precision for exact computations: double plus FPEs or double plus long accumulator

- double-single plus iterative refinement
- o double-single-half/ bfloat
- Over 100 works on mixed precision
- Extending precision for exact computations: double plus FPEs or double plus long accumulator
- **Mixed-precision algorithm** is an algorithm that carefully, effectively and safely combines multiple precisions

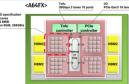
Sustainable HPC \rightarrow Energy-efficient HPC

- Energy-efficient architectures such as graphic processors (GPUs) and FPGAs – Green HPC computing
- PDC@KTH extracts the produced heat to warm up the main campus
- CSCS at Switzerland proposes
 'free cooling' with the water from the lake of Lugano

Precision & Sustainability

Exascale computing and linear algebra

- Exascale computing is constrained by power consumption
- \rightarrow Power-efficient hardware
 - RIKEN's Fugaku w A64FX (FP64:FP32:FP16 = 1:2:4)
 - EPI (ARM, FPGA, RISC-V)



• Linear algebra is known to be dominant by double precision

- \rightarrow Sustainable algorithms
 - math Mixed and adaptive precision computing
 - code Communication hiding or avoiding
 - tools Numerical abnormalities and precision cropping

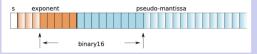
Source: Fuiitsu

Sustainable algorithmic solutions

Inspection w tools \rightarrow Strategy \rightarrow Revision of algorithms

- **()** Arithmetic tool applied to $code \rightarrow manual/automatic$
- If the reduction is possible, derive algorithmic solutions
- Conduct probabilistic (aka optimistic) error analysis
 - error bound with constant $\sqrt{n}\mu$ with high probability
- implement on hardware with stochastic rounding support randomly maps x to one of two bounds

- Verificarlo an automatic tool for debugging and assessing FP precision based on Monte Carlo Arithmetic
- Backends: debugging (MCA) and mixed-precision (Vprec)
- Eg setting r = 5 and p = 10, Vprec simulates a binary16 embedded inside a binary32



• More details: https://github.com/verificarlo and InterFLOP project https://www.interflop.fr/

VerifiCarlo-Vprec Example

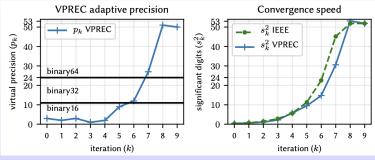
$k \; x_{k+1}$	s_k^{10}	s_k^2
0 0.0690266447076745	0.11	0.37
1 0.1230846130203958	0.21	0.70
$2\ 0.1985746566605835$	0.43	1.43
3 0.2 732703639721015	0.84	2.79
4 0.3119369815109966	1.79	5.95
5 0.3181822938100336	3.40	11.3
6 0.3183098350392471	6.79	22.6
$7\ 0.3183098861837825$	13.6	45.2
8 0.3183098861837907	15.6	51.8
$9\ 0.3183098861837907$	15.6	51.8

```
double newton(double x0) {
   double x_k, x_k1=x0, b=PI;
   do {
      x_k = x_k1;
      x_k1 = x_k*(2-b*x_k);
   }while (fabs((x_k1-x_k)/x_k))
   >= 1e-15);
   return x_k1;
}
```

The Newton-Raphson method for inverse of π^a

^aPablo Oliveira et al. Automatic exploration of reduced floating-point representations in iterative methods. Euro-Par 2019

VerifiCarlo-Vprec Example



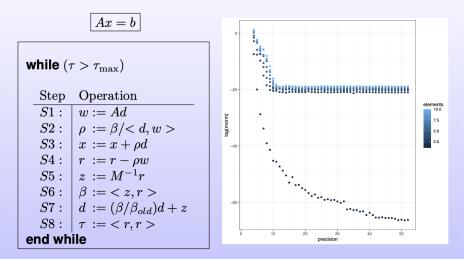
The Newton-Raphson method for inverse of π^a

^aPablo Oliveira et al. Automatic exploration of reduced floating-point representations in iterative methods. Euro-Par 2019

- **NEK5000** is a high order, incompressible Navier-Stokes solver based on the spectral element method
- → **Nekbone** solves a Poisson equation using a Conjugate Gradient method with a simple or spectral element multigrid preconditioner
 - FLEXI is high-order accurate, open source solver for general PDEs of hyperbolic/parabolic-type based on the DG-SEM

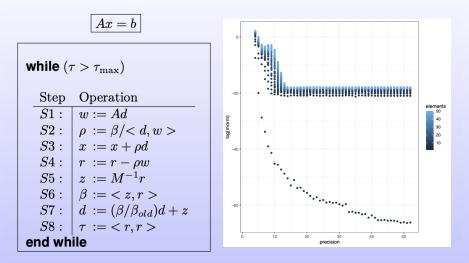
Nekbone w Vprec

Basic example w/o preconditioner

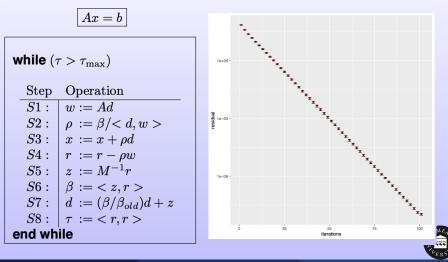


Nekbone w Vprec

Multigrid Preconditioner Example

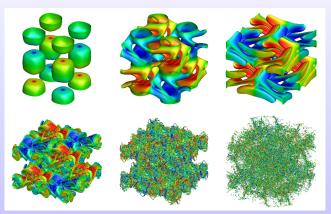


- 20 MCA samples for the previously found Vprec configuration
- simulate binary32



FLEXI

- FLEXI finds the spatial solution of the Navier-Stokes equations and performs the time integration \rightarrow a simple ODE in the form of $U_t = R(U)$
- The ODE in time is solved with explicit Runge-Kutta



Temporal evolution of the Taylor-Green vortex. Shown are contours of vorticity. Courtesy of Andrea Beck

FLEXI results

First attempt

- Instrument the entire FLEXI application
- Run tests for various precisions 53, 52, ..., 20 bits for short time
- "ERROR: Legendre Gauss nodes could not be computed up to desired precision. Code stopped!"
 - $\bullet \ \rightarrow$ construction of the bases requires high precision

FLEXI results

First attempt

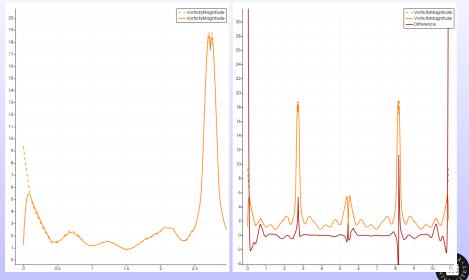
- Instrument the entire FLEXI application
- Run tests for various precisions 53, 52, ..., 20 bits for short time
- "ERROR: Legendre Gauss nodes could not be computed up to desired precision. Code stopped!"
 - ullet ightarrow construction of the bases requires high precision

Refined attempt

 Focus on the compute heavy function that calculates the weak DG-SEM space operator from surface, volume and source contributions

FLEXI results

Focus on **velocity magnitude**: solid line is original in FP64 while dashed is VPREC w 23bits



mixed-precision algorithmic solutions is a way toward sustainable computing

- computer arithmetic tools help to estimate precision needs
 - Per case base and even mixed-precision binary
- numerical techniques help to craft robust and adaptive solvers

- mixed-precision algorithmic solutions is a way toward sustainable computing
- computer arithmetic tools help to estimate precision needs
 - Per case base and even mixed-precision binary
- numerical techniques help to craft robust and adaptive solvers
- employ computer arithmetic tools for^a
 - numerical abnormalities detection
 - precision inspection
 - numerical CI

^aInterFLOP: https://www.interflop.fr/

- mixed-precision algorithmic solutions is a way toward sustainable computing
- computer arithmetic tools help to estimate precision needs
 - Per case base and even mixed-precision binary
- numerical techniques help to craft robust and adaptive solvers
- employ computer arithmetic tools for^a
 - numerical abnormalities detection
 - precision inspection
 - numerical CI

^aInterFLOP: https://www.interflop.fr/

Thank you for your attention !

