Fault-resilient algorithms for Exascale CFD

Eman Bagheri and Manuel Münsch

Centre of Excellence in Exascale CFD

Failure in HPC clusters

• ECMWF (7220 Cray XC-40) with 15 node failures per months excluding preventive maintenance

Hardware Failures

- Processor-Related
- Memory
- Storage
- Network Hardware
- Power Supply and Distribution
- Cooling and Environmental
- Peripheral and Component

Software Failures

- Operating System
- Resource Management and Job Scheduling
- Network Software
- Data and File System
- Application-Level Failures

15.01.2024

Risk of Failure

 ECMWF (7220 Cray XC-40) with15 node failures per months

 $P(failure) = 1 - e^{-\left(\frac{CT}{MTBF} \times \frac{Nodes_{Job}}{Nodes_{Total}}\right) \times \left(1 + \frac{QT}{CT}\right)}$

MTBF : Mean Time Between Failure CT: Compute Time QT: QueueTime

Nodes_{Job} : Number of requested nodes **Nodes**_{Total} : Total number nodes

Assumptions:

15.01.2024

- Exponential MTBF distribution: constant failure rate over time, independent failures
- Uniform node failure distribution
- No redundancy or failover

 $MTBF = 48 \left[\frac{h}{Failure}\right]$ $Nodes_{Total} = 7220$

Job1 CT = 10 days; Nodes_{Job} =100 QT = 1 $\left[\frac{h}{Job}\right]$

P(failure) = 7%

QT = 1

Resilience methodologies

- Checkpointing to stable storage at constant intervals
- Remote in-memory checkpointing
- Coarse resolution backup grids
- Checkpoint-restart using lossy compression
- Process replication
- MPI online rollback recovery methods
- Algorithmic resilience: Recovery-restart for sparse linear solvers

Dynamic checkpointing

- Many hardware failures (overheating, component wear, network connectivity issues) show progressive signs
- Failures often preceded by performance degradation or unusual behaviors
- Online monitoring of the system's performance and checkpointing when a failure is likely to happen
- Reducing I/O overheads
- No information loss
- Requires minimal overhead for system's monitoring

LIKWID: a performance monitoring tool

likwid-powermeter : Measure energy consumption a temperature

- Online monitoring of core temperature
- Accesses RAPL counters on Intel processo
- Predict if core-overheating is likely

CPU name: Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.400 CPU type: Intel Icelake SP processor CPU clock: 2.39 GHz 	CPU name: CPU type: CPU clock:	Intel(R) Xeon(R) Intel Icelake SP
Measure for socket 0 on CPU 0	CFU CLUCK.	
Domain PKG:		
Energy consumed: 256.168 Joules Rowes consumed: 128 078 Watt		
Domain PP0:		
Energy consumed: 0 Joules Power consumed: 0 Watt	Current HW thre	ad temperatures:
Domain DRAM:	Socket 0 HWThre	ad 0: 37 C
Energy consumed: 21.7544 Joules		
POWER CONSUMED: 10.8/6/ Watt Domain PLATEORM:	δοςκέτ Ο Ηψιηγέ	ad 1: 35 C
Energy consumed: 0 Joules	Socket 0 HWThre	ad 2: 39 C
Power consumed: 0 Watt	Socket 0 HWThre	ad 3: 38 C
Measure for socket 1 on CPU 36		
Domain PKG:	Socket 0 Hwihre	ead 4: 37 C
Power consumed: 130.669 Watt	Socket 0 HWThre	ad 5: 37 C
Domain PP0:		
Energy consumed: 0 Joules	δοςκέτ Ο Ηψιηγέ	ad 6: 40 C
Domain DRAM:	Socket 0 HWThre	ad 7: 37 C
Energy consumed: 31.382 Joules	Sackat & UUTher	
Power consumed: 15.6903 Watt	SOCKEL U HWINIE	au 8: 38 C
Energy consumed: 0 Joules	Socket 0 HWThre	ad 9: 39 C
Power consumed: 0 Watt	Eaclint & MUT	
	SUCKEL U HWINIE	ad To: 38 C

15.01.2024

LIKWID: a performance monitoring tool

likwid-perfctr - : A tool for accessing hardware performance counter

- · Simple end-to-end measurement of hardware performance metri
- Offers various measurement groups
- Supports: x86, ARM, POWER CPUs, Nvidia co-processors.
- Operating modes:
 - Wrapper Stethoscope Timeline Marker API

E	Group name	Description
	ТМА	Top down cycle allocation
	MEM_FREERUN	Memory bandwidth in MBytes/s
	MEM	Memory bandwidth in MBytes/s
	L2	L2 cache bandwidth in MBytes/s
	BRANCH	Branch prediction miss rate/ratio
	DIVIDE	Divide unit information
	MEM_DP	Overview of arithmetic and main memory performance
	MEM_SP	Overview of arithmetic and main memory performance
	L2CACHE	L2 cache miss rate/ratio
	FLOPS_SP	Single Precision MFLOP/s
	L3	L3 cache bandwidth in MBytes/s
	CYCLE_STALLS	Cycle Activities (Stalls)
	FLOPS_DP	Double Precision MFLOP/s
	FLOPS_AVX	Packed AVX MFLOP/s
	DATA	Load to store ratio
	ENERGY	Power and Energy consumption
	UPI	UPI data traffic
	CLOCK	Power and Energy consumption
	CYCLE ACTIVITY	Cvcle Activities

- Marker API can cause overhead
- Stethoscope mode allows you to "listen" to what is currently happening, without any overhead

15.01.2024

٠

٠

280OpenFOAM L^3 : Total number of elements to be transferred from the main memory per physical timestep ٠ Neko Size of each element (Byte) α: 260 N: Number of compute nodes

 T(N): Time (s) to transfer data from the main memory when parallelized on N nodes
 240

 $V_c(N)$: Communication volume (Byte) due to halo layers
 220

 λ : Network latency (s)
 200

 b_m : Memory bandwidth (Byte/s)
 200

Effective Memory $O(N^{-1/3})$ b_{net} : Network bandwidth (Byte/s) 180 b_{eff} : effective bandwidth (Byte/s) $V_c(N) = \frac{\alpha L^2}{N^{2/3}} \quad V_d(N) = \frac{\alpha L^3}{N}$ 160140 $b_{eff}(N) = \frac{V_d(N)}{T(N)} = \frac{b_m}{1 + \frac{1}{L}\frac{b_m}{b_m}N^{\frac{1}{3}} + \bar{\lambda}N}$ 120510 15202530 0 35# Nodes Effective Bandwidth 15.01.2024

Dynamic checkpointing: Methodology

- Periodic measurements of temperature using likwid-powermeter
- Continuous measurements of FLOP/s using likwid-perfctr
- Upstream slow-downs are reflected in FLOP/s drops
- Obtain expected performance indicators
- Failure risk evaluation
- Checkpointing in case of persisting anomalies

Dynamic checkpointing: Methodology

Inputs:

Dynamic checkpointing: Initial tests

Dynamic checkpointing

ĈEEC

Advantages:

- Highly efficient with no noticeable overhead
- Effective in case of a slowdown in any network components
- Runtime information about performance and load imbalance

Disadvantages :

- No mechanism to handle soft faults such as bit-flips
- No mechanism to handle sudden hardware faults like power outage physical damage
- More careful monitoring of temporary performance drops
- User-dependent input thresholds

- Fault resillient algorithms are necessary for Exascale simulations
- Likwid provides effiecient tools for performance monitoring
- Dynamic checkpointing is an effective and efficient non-intrusive method to handle gradual failures
- Provide performance metrics for no additional overhead
- Future work to extend the method for GPUs and to detect temporary performance drop more elaborately

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Sweden, Germany, Spain, Greece, and Denmark under grant agreement No 101093393.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European High Performance Computing Joint Undertaking (JU) and Sweden, Germany, Spain, Greece, and Denmark. Neither the European Union nor the granting authority can be held responsible for them.

