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Introduction
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Ax=b

Linear systems of equations arising from many PDEs 
can be efficiently solved using multigrid methods.
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Motivation
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Standard Multigrid Cycles Flexible Multigrid Cycles

Large search space !!
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Genetic Programming – Primer
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Genetic Programming – Grammar-Guided Approach
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Production rules for constructing three-grid multigrid cycles where 
each symbol on the left side of the  sign can be replaced by the ⊨
corresponding symbol on its right side.

[1]
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Software Framework
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Apply genetic operators
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EvoStencils

Optimization Framework Solver Frameworks

Library for 
evolutionary 
algorithms Distributed 

Fitness 
Evaluation

Continue, until 
termination criterion.

Source code repository: https://github.com/jonas-schmitt/evostencils
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Objectives
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Optimisation Components
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Smoothers Jacobi, Gauss-Seidel, RBGS, Jacobi-Newton, RBGS-Newton…., 
etc.

Restriction Operator Full-weighting restriction

Prolongation Operator Bilinear interpolation

Relaxation factors (0.1, 0.15, 0.2, …, 1.9)

Coarse grid solver Gauss Elimination / CG / Jacobi-Newton /…. / etc.
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Results – Nonlinear Multigrid  
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[2]

2D nonlinear problem.

Comparing efficiency of Grammar-Guided Genetic Programming (GGGP / G3P) 
generated solvers with handcrafted reference methods.

The structure of the GGGP -3 solver . The color of the node denotes the 
type of operation. Brown: Red-Black Gauss-Seidel smoothing, Black: 
Coarse Grid Solver, White:No Operation. The borders of the node indicate 
the type of approximation used in the smoothing operation. Red: Newton’s
approximation with the number of Newton steps indicated in red text, Black: 
Picard’s approximation. The relaxation factors are indicated inside the node 
for smoothing and on the edges for coarse-grid correction. 
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Results – Algebraic Multigrid
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, ,

, ,

3D anistropic poisson problem.

Structure of the G3P solver.

Weak scaling of the G3P solver and an optimised V-cycle solver.
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Results – Multigrid Preconditioner
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2D indefinite Helmholtz problem.

Computational structure of the evolved multigrid preconditioners. The color of the node denotes the type of 
operation. Black:Coarse-grid solver, Blue: Pointwise Jacobi smoothing, Red: Red-black Gauss-Seidel smoothing, 
White: No operation. The relaxationfactor of each smoothing step is included in each node, while for coarse-grid 
correction, it is attached to the respective edge. Solving time comparison of the best preconditioners.

[3]
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for your attention!
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