Sustainable and Reliable Computing with Tools: Analyzing Precision Appetites of CFD Applications with VerifiCarlo

Roman lakymchuk¹ joint work with Pablo Oliveira (Paris-Saclay)

Umeå University, Sweden riakymch@cs.umu.se

MS4F - Cross-Cutting Aspects of Exploiting Exascale Platforms for High-Fidelity CFD in Turbulence Research PASC, Davos, Switzerland June 27th, 2023

¹This research is partially funded by EuroHPC JU CoE CEEC (No. 101093393)

Roman lakymchuk (Umeå University)

Davos, Switzerland, June 26-28, 2023 1/22

Outline

Floating-point arithmetic

2 Robustness of algorithms

An approach toward sustainable computing

Roman lakymchuk (Umeå University)

Computer arithmetic approximates real numbers with their finite representations

Floating-point arithmetic (1/2)

Computer arithmetic approximates real numbers with their finite representations

Issues

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+,×) are commutative but non-associative

$$(-1+1) + 2^{-53} \neq -1 + (1+2^{-53})$$
 in double precision

Floating-point arithmetic (1/2)

Computer arithmetic approximates real numbers with their finite representations

Issues

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+,×) are commutative but non-associative

$$2^{-53} \neq 0$$
 in double precision

Floating-point arithmetic (1/2)

Computer arithmetic approximates real numbers with their finite representations

Issues

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+,×) are commutative but non-associative

 $(-1+1) + 2^{-53} \neq -1 + (1+2^{-53})$ in double precision

- Consequence: results of floating-point computations depend on the order of computation
- Results computed by performance-optimized parallel floating-point libraries may be often inconsistent

Floating-point arithmetic (2/2)

Almost all computer hardware and software support the **IEEE Standard** for Floating-Point Arithmetic IEEE 754-2019

o double - binary64

single - binary32

Roman lakymchuk (Umeå University)

- double-single plus iterative refinement
- o double-single-half/ bfloat
- Over 100 works on mixed precision ^a

^aNicholas Higham and Théo Mary. 'Mixed Precision Algorithms in Numerical Linear Algebra'

- double-single plus iterative refinement
- o double-single-half/ bfloat
- Over 100 works on mixed precision
- Extending precision for exact computations: double plus FPEs or double plus long accumulator

- double-single plus iterative refinement
- o double-single-half/ bfloat
- Over 100 works on mixed precision
- Extending precision for exact computations: double plus FPEs or double plus long accumulator
- **Mixed-precision algorithm** is an algorithm that carefully, effectively and safely combines multiple precisions

ExBLAS: Parallel Reduction

Highlights of the Algorithm

- Based on FPE with EFT and Kulisch accumulator
- Suitable for CPUs, GPUs, Xeon Phi
- Guarantees "inf" precision
- ightarrow bit-wise reproducibility

^aS. Collange, R. lakymchuk et al. Numerical Reproducibility for the Parallel Reproducibility for

Roman lakymchuk (Umeå University)

Davos, Switzerland, June 26-28, 2023 6/22

Performance results

Our approach performs well on memory-bound computations

Davos, Switzerland, June 26-28, 2023 7/22

Krylov-type Solvers

Preconditioned Conjugate Gradient

$$Ax = b$$

while	$(au > au_{\max})$		
Step	Operation	Kernel	Communication
S1:	w := Ad	SPMV	Alltoallw*
S2:	$\rho := \beta / \langle d, w \rangle$	DOT product	Allreduce
S3:	$x := x + \rho d$	AXPY	_
S4:	$r := r - \rho w$	AXPY	-
S5:	$z := M^{-1}r$	Apply preconditioner	_
S6:	$\beta := \langle z, r \rangle$	DOT product	Allreduce
S7:	$d := (\beta/\beta_{old})d + z$	AXPY-like	-
S8:	$\tau := \langle r, r \rangle$	DOT product	Allreduce
end w	hile		

Robustness of Algorithms

- FP ops are non-associative : $(-1+1) + 2^{-53} \neq -1 + (1+2^{-53})$
- Non-reproducibility in PCG: dot, axpy, and spmv
- → Solution : ExBLAS (ParCo15, NRE15, JCAM, IJHPCA)

Iteration	Residual			
	MPFR	Original 1 proc	Original 48 procs	Exblas & Opt
0	0x1.19f179eb7f032p+49	0x1.19f179eb7f033p+49	0x1.19f179eb7f033p+49	0x1.19f179eb7f032p+49
2	0x1.f86089ece9f75p+38	0x1.f86089f08810dp+38	0x1.f86089ed07a76p+38	0x1.f86089ece9f75p+38
9	0x1.fc59a29d329ffp+28	0x1.fc59a29d1b6ap+28	0x1.fc59a29d2e989p+28	0x1.fc59a29d329ffp+28
10	0x1.74f5ccc211471p+22	0x1.74f5cc b8203ad p+22	0x1.74f5ccc1fafefp+22	0x1.74f5ccc211471p+22
40	0x1.7031058eb2e3ep-19	0x1.703105aea0e8ap-19	0x1.7031058e8ff5ap-19	0x1.7031058eb2e3ep-19
42	0x1.4828f76bd68afp-23	0x1.4828f6fabbf2ap-23	0x1.4828f76b b9038 p-23	0x1.4828f76bd68afp-23
45	0x1.8646260a70678p-26	0x1.86462601300d2p-26	0x1.8646260a71301p-26	0x1.8646260a70678p-26
47	0x1.13fa97e2419c7p-33	0x1.13fa98038c44ep-33	0x1.13fa97e54e903p-33	0x1.13fa97e2419c7p-33

Table 3: Accuracy and reproducibility comparison on the intermediate and final residual against MPFR for a matrix with condition number of 10¹². The matrix is generated following the procedure from Section 5.1 with n=4,019,679 (159³).

Roman lakymchuk (Umeå University)

Davos, Switzerland, June 26-28, 2023 9/22

European Processor Initiative

VRP and STX

Fig: Layered programming model

- for large ill-conditioned systems
- "when the standard precision unit cannot reach the expected accuracy, the variable precision unit takes the relay"
- zero-copy from GPP to VRP

- Stencil/ tensor accelerator
- Energy efficiency
- Posit-based ML & DNN Acceleration

Roman lakymchuk (Umeå University)

Sustainable HPC \rightarrow Energy-efficient HPC

- Energy-efficient architectures such as graphic processors (GPUs) and FPGAs – Green HPC computing
- PDC@KTH extracts the produced heat to warm up the main campus
- CSCS at Switzerland proposes
 'free cooling' with the water from the lake of Lugano

Precision & Sustainability

Exascale computing and linear algebra

- Exascale computing is constrained by power consumption
- \rightarrow Power-efficient hardware
 - RIKEN's Fugaku w A64FX (FP64:FP32:FP16 = 1:2:4)
 - EPI (ARM, FPGA, RISC-V)

- Linear algebra is known to be dominant by double precision
- \rightarrow Sustainable algorithms
 - math Mixed and adaptive precision computing
 - code Communication hiding or avoiding
 - tools Numerical abnormalities and precision cropping

Davos, Switzerland, June 26-28, 2023 12/22

Source: Fuiitsu

Robust and sustainable algorithms

Idea

lagom - not too much, not too little, just the right amount

Roman lakymchuk (Umeå University)

Robust and sustainable algorithms

Idea

lagom - not too much, not too little, just the right amount

Analysis w tools
$$\rightarrow$$
 Strategy \rightarrow Revision of algorithms

- **()** Arithmetic tool applied to $code \rightarrow manual/automatic$
- If the reduction is possible, apply algorithmic solutions
- Conduct probabilistic (aka optimistic) error analysis
 - error bound with constant $\sqrt{n}\mu$ with high probability
- implement on hardware with stochastic rounding support randomly maps x to one of two bounds

Analysis with tools: VerifiCarlo

• Verificarlo – an automatic tool for debugging and assessing FP precision based on Monte Carlo Arithmetic

- Backends: debugging (MCA) and mixed-precision (Vprec)
- Eg setting r = 5 and p = 10, Vprec simulates a binary16 embedded inside a binary32

VerifiCarlo-Vprec Example

$k \; x_{k+1}$	s_k^{10}	s_k^2
0 0.0690266447076745	0.11	0.37
1 0.1230846130203958	0.21	0.70
$2\ 0.1985746566605835$	0.43	1.43
3 0.2732703639721015	0.84	2.79
4 0.3119369815109966	1.79	5.95
5 0.3181822938100336	3.40	11.3
6 0.3183098350392471	6.79	22.6
7 0.3183098861837825	13.6	45.2
8 0.3183098861837907	15.6	51.8
9 0.3183098861837907	15.6	51.8

```
double newton(double x0) {
   double x_k, x_k1=x0, b=PI;
   do {
      x_k = x_k1;
      x_k1 = x_k*(2-b*x_k);
   }while (fabs((x_k1-x_k)/x_k))
   >= 1e-15);
   return x_k1;
}
```

The Newton-Raphson method for inverse of π^a

^aPablo Oliveira et al. Automatic exploration of reduced floating-point representations in iterative methods. Euro-Par 2019

Roman lakymchuk (Umeå University)

VerifiCarlo-Vprec Example

The Newton-Raphson method for inverse of π^a

^aPablo Oliveira et al. Automatic exploration of reduced floating-point representations in iterative methods. Euro-Par 2019

EuroHPC JU CoE CEEC: 2023-26

Center of Excellence for Exascale CFD

- Sustainable algorithmic solutions with mixed-precision and tools
- Consortium codes: Neko, NEK5000/ NekRS, FLEXI, waLBerla

- **NEK5000** is a high order, incompressible Navier-Stokes solver based on the spectral element method
- Nekbone solves a Poisson equation using a Conjugate Gradient method with a simple or spectral element multigrid preconditioner
- AMG benchmark parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids

• Two solvers: CG and GMRES

Roman lakymchuk (Umeå University)

Nekbone w Vprec

Basic example w/o preconditioner

18/22

Nekbone w Vprec

Multigrid Preconditioner Example

Roman lakymchuk (Umeå University)

Davos, Switzerland, June 26-28, 2023 19/22

- 20 MCA samples for the previously found Vprec configuration
- simulate binary32

Davos, Switzerland, June 26-28, 2023 20/22

AMG w Vprec

AMG-PCG Laplace type problem

AMG-GMRES Non-linear time-dependent problem

Davos, Switzerland, June 26-28, 2023 21/22

Summary

- mixed-precisions is a way toward sustainable computing
- employ computer arithmetic tools for
 - numerical abnormalities detection
 - precision requirements inspection
 - numerical CI etc

Yales2 CFD application with the DPCG solver: 16 % energy gain

Automatic exploration of reduced floating-point representations in iterative methods.

Chatelain, Petit, de Oliveira Castro, Lartigue, Defour. Euro-Par 2019

Summary

- mixed-precisions is a way toward sustainable computing
- employ computer arithmetic tools for
 - numerical abnormalities detection
 - precision requirements inspection
 - numerical CI etc

Yales2 CFD application with the DPCG solver: 16 % energy gain

Automatic exploration of reduced floating-point representations in iterative methods.

Chatelain, Petit, de Oliveira Castro, Lartigue, Defour. Euro-Par 2019

Thank you for your attention !

Roman lakymchuk (Umeå University)

Davos, Switzerland, June 26-28, 2023 22/22